Nav: Home

Wastewater reveals the levels of antibiotic resistance in a region

March 27, 2019

An international study compares the number of antibiotic resistance genes - which give bacteria the ability to withstand the effects of antibiotics - found in the water treatment plants of seven European countries, with Finland, Norway, Germany, Ireland, Spain, Portugal and Cyprus participating in the study.

The results show that the number of antibiotic resistance genes in wastewater corresponds with the number of such bacteria found in samples collected from patients in that region, as well as with overall antibiotic consumption in the area.

However, modern, well-functioning wastewater treatment plants seem to be quite effective in removing bacteria resistant to antibiotics from the water during the treatment process.

Nevertheless, the study did indicate that it's possible for a treatment plant to function as an incubator of antibiotic resistance under certain conditions. Among the 12 plants studied, in one facility the relative number of antibiotic resistance genes increased during the purification process.

The study was conducted by an international research group. The University of Helsinki was represented in the study by microbiologist Marko Virta's group from the Faculty of Agriculture and Forestry. The results were published in the scientific journal Science Advances.

SOUTHERN EUROPE USES MORE ANTIBIOTICS THAN NORTHERN EUROPE

European antibiotic use varies widely by country. Overall, southern Europeans use much more antibiotics than their counterparts in the north. Similarly, people living in the south of Europe tend to carry a much higher number of antibiotic-resistant bacteria than those living in northern Europe.

Among the countries in the study, antibiotic use is relatively high in Spain, Portugal, Cyprus, and Ireland, whereas in Finland, Norway and Germany antibiotics are prescribed and used less.

The amount of antibiotic resistance in these countries mirrors the division above: the Spaniards, the Portuguese, the Cypriots, and the Irish have more bacteria resistant to antibiotics in their bowels than do the Finns, the Norwegians, and the Germans.

All of the countries investigated in the study had various antibiotic resistance genes in the wastewater entering their treatment plants. The number of resistance genes found in wastewater bound for purification was higher in Portugal, Spain, Cyprus, and Ireland than in Finland, Norway, and Germany.

However, the treatment plants were successful in eliminating resistance from most of the samples. Even so, the difference between countries persisted: the higher the resistance in the incoming wastewater, the higher it remained in the water leaving the plant.

Only at one Portuguese treatment plant did the share of antibiotic resistance genes found in the wastewater grow during purification, turning the plant into an incubator of antibiotic resistance.

AGE OF TREATMENT PLANTS, WATER TEMPERATURE, AND OTHER FACTORS HAVE AN IMPACT

The study does not provide a direct answer as to why the extent of antibiotic resistance increased in one plant and decreased in the others. The development of resistance may be influenced by a number of factors: the age and size of the treatment plant, the techniques used, the temperature of the wastewater, the amount of antibiotic residue in the water, and the interaction between the bacteria and various types of protozoa found in the water.

"In this study, 11 of the 12 wastewater treatment plants under investigation mitigated the resistance problem, which seems to indicate that modern plants work well in this regard," Marko Virta says.

"At the same time, an older plant or otherwise deficient purification process may end up increasing antibiotic resistance in the environment. We need more research findings from countries with high antibiotic consumption and less developed wastewater treatment practices."

Virta's research group is currently initiating new projects in Asia and West Africa.

IRRIGATION SPREADS RESISTANCE INTO FOOD

Assessing the risk associated with antibiotic resistance found in wastewater is difficult, as so far researchers and authorities have an incomplete picture of the number of antibiotic resistance genes potentially causing a clear danger to human health.

At their worst, disease-causing bacteria resistant to antibiotics could be transported in the purified wastewater into the environment and to the irrigation water used in agriculture. Further down the line, they could find their way back to humans in their food.

This problem might particularly impact countries suffering from a lack of potable water since they are more prone to using purified wastewater for irrigation.
-end-


University of Helsinki

Related Bacteria Articles:

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
Probiotics are not always 'good bacteria'
Researchers from the Cockrell School of Engineering were able to shed light on a part of the human body - the digestive system -- where many questions remain unanswered.
More Bacteria News and Bacteria Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.