Nav: Home

U of T Mississauga study identifies 'master pacemaker' for biological clocks

March 27, 2019

What makes a biological clock tick? According to a new study from U of T Mississauga, the surprising answer lies with a gene typically associated with stem and cancer cells.

In the first study of its kind for the field of circadian biology, UTM researchers used RNA sequencing to observe the expression of genes in the suprachiasmatic nucleus (SCN), a tiny region of the brain's hypothalamus region that governs the biological clock in mammals. Their findings pinpoint a gene that appears to regulate the biological clock and act as "master control" of the central circadian pacemaker.

Previously, the researchers were studying Period2, a gene found in the SCN, and were surprised to observe that another gene known as SOX2 was also present in the same area. "We noticed that Period2 was always expressed in the same population of cells as those that are expressed in SOX2--the biological clock was one of the major brain regions where these two genes overlapped," says Hai-Ying Mary Cheng, associate professor with the Department of Biology and Canada Research Chair in Molecular Genetics of Biological Clocks. "This is interesting because SOX2 is usually expressed in stem cells and in cancer cells, but we usually don't find it in large amounts in healthy adult brains or in neurons. We wondered if it might have a function that no one has previously thought about."

"Our research focuses on the basic understanding of how the biological clock organizes itself," says lead author and PhD candidate Arthur Cheng (no relation). He notes that events such as shift work, jet lag and travelling between time zones can disrupt circadian rhythms in humans. "This can have a negative impact on health. Disrupted circadian rhythms are thought to be associated with health issues like fatigue, cancers, heart attack and stroke."

Using mouse models that were missing the SOX2 gene, the researchers observed rodent behaviour under controlled environmental conditions. "A normal mouse with a functioning biological clock will start running on its wheel when the lights go off and will run through the night," says Arthur Cheng. "They stop and go to bed when the lights come on, but when we knock out SOX2, the mice don't seem to know what they're doing."

"It's like their clock is broken or wonky," adds Hai-Ying Mary Cheng. "It's not telling time properly." The mice missing SOX2 also displayed weak running activity and irregular sleeping patterns. "It was as if they were chronically jet-lagged," Arthur Cheng says, noting that the mice also had trouble adapting to new schedules. "They lost their rhythm, even with a small manipulation of light exposure," he says. "Adapting to jet-lag is built into our biological clocks--that's how we can survive intercontinental travel. But the mice missing the SOX2 gene lost their ability to adapt."

"When we knocked out SOX2, we observed great changes in different gene networks in the SCN that were very important to its neural network functions," says Hai-Ying Mary Cheng. "We think that instead of regulating a single gene, SOX2 is coordinating the expression of many, many genes, and contributing to the function of the SCN as the master regulator of the circadian pacemaker."
-end-
The study was published in the March 2019 issue of Cell Reports. Research funding was provided by Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council of Canada, NSERC Tier II Canada Research Chair in Molecular Genetics of Biological Clocks and the Canadian Foundation for Innovation John R. Evans Leaders Fund.

CONTACT:

Associate Professor Hai-Ying Mary Cheng
Department of Biology
Office: 905-569-4299
Lab: 905-569-5689
haiying.cheng@utoronto.ca

Arthur Cheng, PhD Candidate
Lab: 905-569-5689
ahh.cheng@mail.utoronto.ca

Blake Eligh
Staff Reporter, U of T Mississauga
905-828-3983
blake.eligh@utoronto.ca

University of Toronto

Related Cancer Cells Articles:

Cancer cells send signals boosting survival and drug resistance in other cancer cells
Researchers at University of California San Diego School of Medicine report that cancer cells appear to communicate to other cancer cells, activating an internal mechanism that boosts resistance to common chemotherapies and promotes tumor survival.
A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Single gene encourages growth of intestinal stem cells, supporting 'niche' cells -- and cancer
A gene previously identified as critical for tumor growth in many human cancers also maintains intestinal stem cells and encourages the growth of cells that support them, according to results of a study led by Johns Hopkins researchers.
Prostate cancer cells grow with malfunction of cholesterol control in cells
Advanced prostate cancer and high blood cholesterol have long been known to be connected, but it has been a chicken-or-egg problem.
Immune therapy scientists discover distinct cells that block cancer-fighting immune cells
Princess Margaret Cancer Centre scientists have discovered a distinct cell population in tumours that inhibits the body's immune response to fight cancer.
New system developed that can switch on immune cells to attack cancer cells
Researchers have developed an artificial structure that mimics the cell membrane, which can switch on immune cells to attack and destroy a designated target.
Hybrid immune cells in early-stage lung cancer spur anti-tumor T cells to action
Researchers have identified a unique subset of these cells that exhibit hybrid characteristics of two immune cell types -- neutrophils and antigen-presenting cells -- in samples from early-stage human lung cancers.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Sleep hormone helps breast cancer drug kill more cancer cells
Tiny bubbles filled with the sleep hormone melatonin can make breast cancer treatment more effective, which means people need a lower dose, giving them less severe side effects.
Breast cancer tumor-initiating cells use mTOR signaling to recruit suppressor cells to promote tumor
Baylor College of Medicine researchers report a new mechanism that helps cancer cells engage myeloid-derived suppressor cells.

Related Cancer Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...