Study shows arctic warming contributes to drought

March 27, 2019

When the Arctic warmed after the ice age 10,000 years ago, it created perfect conditions for drought.

According to new research led by a University of Wyoming scientist, similar changes could be in store today because a warming Arctic weakens the temperature difference between the tropics and the poles. This, in turn, results in less precipitation, weaker cyclones and weaker mid-latitude westerly wind flow -- a recipe for prolonged drought.

The temperature difference between the tropics and the poles drives a lot of weather. When those opposite temperatures are wider, the result is more precipitation, stronger cyclones and more robust wind flow. However, due to the Arctic ice melting and warming up the poles, those disparate temperatures are becoming closer.

"Our analysis shows that, when the Arctic is warmer, the jet stream and other wind patterns tend to be weaker," says Bryan Shuman, a UW professor in the Department of Geology and Geophysics. "The temperature difference in the Arctic and the tropics is less steep. The change brings less precipitation to the mid-latitudes."

Shuman is a co-author of a new study that is highlighted in a paper, titled "Mid-Latitude Net Precipitation Decreased With Arctic Warming During the Holocene," published today (March 27) online in Nature, an international weekly science journal. The print version of the article will be published April 4.

Researchers from Northern Arizona University; Universite Catholique de Louvain in Louvain-In-Neuve, Belgium; the Florence Bascom Geoscience Center in Reston, Va.; and Cornell University also contributed to the paper.

"The Nature paper takes a global approach and relates the history of severe dry periods of temperature changes. Importantly, when temperatures have changed in similar ways to today (warming of the Arctic), the mid-latitudes -- particularly places like Wyoming and other parts of central North America -- dried out," Shuman explains. "Climate models anticipate similar changes in the future."

Currently, the northern high latitudes are warming at rates that are double the global average. This will decrease the equator-to-pole temperature gradient to values comparable with the early to middle Holocene Period, according to the paper.

Shuman says his research contribution, using geological evidence, was helping to estimate how dry conditions have been in the past 10,000 years. His research included three water bodies in Wyoming: Lake of the Woods, located above Dubois; Little Windy Hill Pond in the Snowy Range; and Rainbow Lake in the Beartooth Mountains.

"Lakes are these natural recorders of wet and dry conditions," Shuman says. "When lakes rise or lower, it leaves geological evidence behind."

The researchers' Holocene temperature analysis included 236 records from 219 sites. During the past 10,000 years, many of the lakes studied were lower earlier in history than today, Shuman says.

"Wyoming had several thousand years where a number of lakes dried up, and sand dunes were active where they now have vegetation," Shuman says. "Expanding to the East Coast, it is a wet landscape today. But 10,000 years ago, the East Coast was nearly as dry as the Great Plains."

The research group looked at the evolution of the tropic-to-pole temperature difference from three time periods: 100 years ago, 2,000 years ago and 10,000 years ago. For the last 100 years, many atmospheric records facilitated the analysis but, for the past 2,000 years or 10,000 years, there were fewer records available. Tree rings can help to expand studies to measure temperatures over the past 2,000 years, but lake deposits, cave deposits and glacier ice were studied to record prior temperatures and precipitation.

"This information creates a test for climate models," Shuman says. "If you want to use a computer to make a forecast of the future, then it's useful to test that computer's ability to make a forecast for some other time period. The geological evidence provides an excellent test."
-end-
The research was funded by the Science Foundation Arizona Bisgrove Scholar Award, the National Science Foundation and the state of Arizona's Technology and Research Initiative Fund administered by the Arizona Board of Regents.

University of Wyoming

Related Ice Age Articles from Brightsurf:

Ice discharge in the North Pacific set off series of climate events during last ice age
Repeated catastrophic ice discharges from western North America into the North Pacific contributed to, and perhaps triggered, hemispheric-scale changes in the Earth's climate during the last ice age.

Ice Age manatees may have called Texas home
Manatees don't live year-round in Texas, but these gentle sea cows are known to occasionally visit, swimming in for a 'summer vacation' and returning to warmer waters for the winter.

Sea ice triggered the Little Ice Age, finds a new study
A new study finds a trigger for the Little Ice Age that cooled Europe from the 1300s through mid-1800s, and supports surprising model results suggesting that under the right conditions sudden climate changes can occur spontaneously, without external forcing.

How cold was the ice age? Researchers now know
A University of Arizona-led team has nailed down the temperature of the last ice age -- the Last Glacial Maximum of 20,000 years ago - to about 46 degrees Fahrenheit.

What causes an ice age to end?
Research by an international team helps to resolve some of the mystery of why ice ages end by establishing when they end.

New study results consistent with dog domestication during ice age
Analysis of Paleolithic-era teeth from a 28,500-year-old fossil site in the Czech Republic provides supporting evidence for two groups of canids -- one dog-like and the other wolf-like - with differing diets, which is consistent with the early domestication of dogs.

Did an extraterrestrial impact trigger the extinction of ice-age animals?
Based on research at White Pond near Elgin, South Carolina, University of South Carolina archaeologist Christopher Moore and 16 colleagues present new evidence of a controversial theory that suggests an extraterrestrial body crashing to Earth almost 13,000 years ago caused the extinction of many large animals and a probable population decline in early humans.

Dust in ice cores leads to new knowledge on the advancement of the ice before the ice age
Working with the ice core ReCap, drilled close to the coast in East Greenland, postdoc Marius Simonsen wondered why the dust particles from the interglacial period -- the warmer period of time between the ice ages -- were several times bigger than the dust particles from the ice age.

Ice-sheet variability during the last ice age from the perspective of marine sediment
By using marine sediment cores from Northwestern Australia, a Japanese team led by National Institute of Polar Research (NIPR) and the University of Tokyo revealed that the global ice sheet during the last ice age had changed in shorter time scale than previously thought.

What triggered the 100,000-year Ice Age cycle?
A slowing of ocean circulation in the waters surrounding Antarctica drastically altered the strength and more than doubled the length of global ice ages following the mid-Pleistocene transition, a new study finds.

Read More: Ice Age News and Ice Age Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.