Duke-NUS study: New technique shows promise for heart muscle regeneration

March 27, 2019

SINGAPORE, 22 March 2019 - Researchers at Duke-NUS Medical School, Singapore, have developed an approach to regenerate heart muscle using stem cells. Their method for priming stem cells to become heart tissues could potentially enable heart regeneration stem cell therapies, according to their study published in the journal Cell Reports.1

The self-regeneration of human heart muscle following injury is extremely limited. Scientists have been studying techniques to prompt different kinds of stem cells to differentiate into heart cell precursors, which could then help rebuild heart muscle fibres. However, their approaches have not yet met regulations set forth by the US Food and Drug Administration and the European Medicines Agency for regenerative therapies.

Dr Lynn Yap, a Senior Research Fellow at Duke-NUS' Cardiovascular and Metabolic Disorders (CVMD) Programme and the study's first author, explained, "Regulatory authorities specifically require these stem-cell-derived precursors be prepared from human-only cells and in cultures that use clearly defined chemicals and no animal components. The method must be reproducible, and the cells must have clear characteristics while not leading to adverse side effects when injected."

Led by senior author, Professor Karl Tryggvason, Tanoto Foundation Professor in Diabetes Research at Duke-NUS' CVMD Programme, the team comprising scientists from Singapore, the UK, Sweden, and the Netherlands investigated using a heart muscle associated protein called laminin for promoting the differentiation of human embryonic stem cells into heart cell precursors.

Laminins attach to the outer parts of cell membranes and are thought to play a role in the differentiation of precursor cells into other types of cells. Several types of laminins exist.

Prof Tryggvason and his team produced laminin-221 in the laboratory by stimulating the human genes that code for this protein. Laminin-221 was then used to coat a culture of pluripotent human embryonic stem cells. They also used laminin-521 to support the growth of the stem cells, and organic compounds called CHIR99021 to boost stem cell differentiation.

Their method led to stem cells differentiating into cardiovascular precursor cells. These included three main sub-populations: cardiac muscle-like cells, fibroblast-like cells, and epithelial-like cells; but did not include cells with a propensity to develop into tumours.

The team was able to reproduce their method with very similar results using two stem cell lines generated decades apart by two different laboratories using different techniques.

Using an animal model, the researchers injected 9- and 11-day-old cardiovascular precursor cells into damaged heart tissue and found these precursor cells differentiated into cardiac muscle fibre bundles that survived in the heart for at least 12 weeks; heart functions also improved.

"These results suggest a role for the use of laminins in cardiac muscle cell differentiation, and may lead the development of clinical-quality cardiovascular progenitor cells for regenerative cardiology in humans," said Prof Tryggvason.

Future research will need to investigate the cell subpopulations that form with this technique to explore whether they can intensify new heart muscle growth in living animals.

Senior Vice Dean for Research at Duke-NUS Medical School, Prof Patrick Casey, commented, "This study is timely as leading experts in heart muscle regeneration have called for a 'science-driven path forward'2 in the field, and the innovative research conducted by Prof Trygvasson and his team delivers an advance that could provide a path forward in this promising new area of cardiovascular therapy."
-end-


Duke-NUS Medical School

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.