I won't have what he's having: The brain and socially motivated behavior

March 27, 2020

Aichi, Japan -- How much we value an item is often related to what other people have. You might want the newest fashion, but not once everybody has it. Or, winning a free lunch at your favorite restaurant might not seem as great if the other person won a million dollars. Now, researchers in Japan have discovered a region of the brain that controls these kinds of behaviors in monkeys.

In their study published in Proceedings of the National Academy of Sciences, USA, a team of researchers from the National Institutes of Natural Sciences in Okazaki, Japan show that when monkeys think other monkeys will be rewarded, their own rewards become less appealing. This was evident in the amount that monkeys licked their lips while waiting for their reward. The team found that licking increased the more monkeys anticipated receiving a reward and decreased as they anticipated the other monkey would receive it instead.

This behavior was reflected in the brain. As first author Atsushi Noritake explains, "We found a clear link between brain activity in the lateral hypothalamus and the licking behavior that represented subjective value of the reward." The team recorded activity from neurons as monkeys saw pictures that indicated the chance that they or another monkey would receive a reward. The scientists found that for some cells, firing rates increased with the probability of receiving the reward and decreased with the probability that the other monkey would get the reward.

A second experiment showed that the same brain region was necessary for the social observations to affect how much the monkeys valued the reward. When the scientists temporarily shut down the lateral hypothalamus using an inhibitory drug, the monkeys' licking behavior was unchanged when they anticipated receiving the reward themselves--it still increased with the chance of reward. However, the amount of licking was now unrelated to the chance of reward when they were cued that the other monkey was likely to get it.

This behavior was similar to what happened when the other monkey was prevented from getting the reward or when it was absent altogether.

"Without a functioning lateral hypothalamus, it was as if the monkeys no longer processed what they were seeing as a social situation," says team leader Masaki Isoda. "Thus, we believe that the lateral hypothalamus is necessary for shaping socially motivated behavior, perhaps in coordination with other brain areas such as the medial prefrontal cortex."
-end-


National Institutes of Natural Sciences

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.