CRG standardises COVID-19 data analysis to aid international research efforts

March 27, 2020

Researchers from the Centre for Genomic Regulation (CRG) have launched a new database to advance the international research efforts studying COVID-19.

The publicly-available, free-to-use resource (https://covid.crg.eu) can be used by researchers from around the world to study how different variations of the virus grow, mutate and make proteins.

"Scientists are working round the clock to understand SARS-CoV-2, the virus causing COVID-19, so that we can find its weak spots and beat it. A huge amount of scientific data is being published around the world," says Eva Novoa, a researcher at the CRG in Barcelona.

"However, some of the technologies we use to study SARS-CoV-2, such as nanopore RNA sequencing, are so new that the results of one paper aren't comparable to another due to the patchwork of different standards and methodologies used. We are taking all this data and analyzing it so that it meets a more universally comparable standard. This will help researchers more quickly and accurately spot the strengths and weaknesses of the coronavirus."

To understand how the coronavirus grows, mutates and replicates, scientists have to sequence the RNA of COVID-19. The RNA sequence reveals crucial information about the proteins the virus makes to invade human cells and replicate, which in turn informs governments on the infectiousness and severity of the pandemic.

Traditional sequencing tools can take a long time to provide results. In recent years, sequencing data in real time has become a reality thanks to the use of nanopore sequencing technologies, revolutionizing genomics research and disease outbreak monitoring. Nanopore sequencing provides scientists and clinicians with immediate access to the DNA and RNA sequence information of any living cell in real-time, enabling a rapid response against the threat of a pandemic.

However, the raw data produced by nanopore sequencing is highly complex. Scientists and clinicians currently lack systematic guidelines for the reproducible analysis of the data, limiting the vast potential of the nascent technology.

To standardize the analysis of publicly available SARS-CoV-2 nanopore sequencing data, researchers at the Centre for Genomic Regulation (CRG) in Barcelona are using MasterOfPores, a computer program developed by the group of Eva Novoa and CRG Bioinformatics Unit. The software was first described last week in .

"The internet and an increasing culture of open science, data sharing and preprints have transformed the research landscape. Infrastructure that would take months to set up to research an emerging virus can now be done in just a few days owing to novel scientific computing approaches," says Julia Ponomarenko, Head of the Bioinformatics Unit at the CRG.

MasterOfPores can be executed on any Unix-compatible OS on a computer, cluster or cloud without the need of installing any additional software or dependencies, and is freely available in Github. The publicly-available, free-to-use resource has currently analysed 3TB of SARS-CoV-2 nanopore RNA sequencing data. The CRG researchers will continue to update the resource with new data as soon as it becomes available.
-end-


Center for Genomic Regulation

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.