Adult stem cell injections may reduce pain and improve walking in severe angina patients

March 28, 2009

CHICAGO - Preliminary data presented on March 28 as a late-breaking abstract at the American College of Cardiology's 58th annual scientific session from the largest CD34+ adult stem cell study for heart disease has shown the first evidence that delivering a potent form of autologous (from the patient) adult stem cells into the heart muscle of patients with severe angina may result in less pain and improved exercise tolerance.

The six-month, Phase II data were presented by principal investigator Douglas Losordo, M.D., director of the Feinberg Cardiovascular Research Institute and of the Program in Cardiovascular Regenerative Medicine at Northwestern Memorial Hospital. The trial was sponsored by Baxter International Inc.

"The results from this study provide the first evidence that a patient's own stem cells could actually be used as a treatment for their heart disease," said Losordo, who also is the Eileen M. Foell Professor of Heart Research at the Feinberg School. "The study provides potential hope for those patients with currently untreatable angina to be more active with less pain."

"Baxter sponsored this trial in order to continue advancing the science of adult stem cell therapies for cardiovascular disease," said Hartmut J. Ehrlich, MD, vice president of global research and development for Baxter's BioScience business. "While the preliminary results from this early- stage trial seem encouraging, further studies will be necessary to evaluate the effectiveness of this adult stem cell therapy."

Losordo also cautioned that the findings of the 26-site trial, while encouraging, are not yet definitive and require verification in a larger study. Northwestern Memorial Hospital was the lead site of the study.

Trial design

This prospective, randomized, double-blind, placebo-controlled, multi-center study included 167 adult patients who were on maximal medical therapy and were not suitable candidates for conventional procedures to improve blood flow to the heart, such as angioplasty, stents, or coronary artery bypass surgery.

All patients were given a drug to stimulate release of CD34+ adult stem cells from the bone marrow, and these cells were then collected from the bloodstream using a process called apheresis. The CD34+ cells were then separated from the other blood components for use in this investigational therapy using Baxter's ISOLEX 300i Magnetic Cell Selection System, currently approved for use with cancer patients.

The CD34+ adult stem cells were injected into 10 locations in the heart muscle of patients in the treatment group. Patients in the placebo group received saline. A sophisticated electromechanical mapping technology identified where the heart muscle was alive but not functioning, because it was not receiving enough blood supply. This state is called hibernating myocardium.

"Muscle hibernates because it wants to decrease energy consumption to stay alive," Losordo explained. "It's not getting enough oxygenated blood to perform normally, so it shuts down its contractile function."

Results

The autologous stem cell transplant is the first therapy to produce an improvement in patients with severe angina, measured by their ability to walk on a treadmill. Six months after the procedure, the autologous stem cell transplant patients were able to walk longer (average of 60 seconds) on a treadmill than the placebo group. It also took longer until they experienced angina pain on a treadmill compared to the placebo group and, when they felt pain, it went away faster with rest. In addition, they had a reduction of episodes of chest pain compared to the control group.
-end-
About CMI

Out of the estimated one million people in the U.S. who suffer from chronic, severe angina -- chest pain due to blocked arteries -- about 300,000 cannot be helped by any traditional medical treatment such as angioplasty, bypass surgery or stents. This is called intractable angina, the severity of which is designated by classes.

The patients in the Baxter-sponsored study were Canadian Classification System (CCS) class 3 or 4, meaning they had chest pain from normal to minimal activities such as brushing their teeth or even resting.

Losordo was previously a paid consultant to Baxter.

Northwestern University

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.