Smarter memory device holds key to greener gadgets

March 28, 2011

Fast, low-energy memory for MP3s, smartphones and cameras could become a reality thanks to a development by scientists.

Researchers have created a tiny device that improves on existing forms of memory storage.

Conventional methods use electronic devices to convert data into signals that are stored as binary code. This latest device uses a tiny mechanical arm to translate the data into electrical signals. This allows for much faster operation and uses much less energy compared with conventional memory storage tools.

The device records data by measuring the current passing through a carbon nanotube, and the binary value of the data is determined by an electrode that controls the flow of current.

Scientists at the University of Edinburgh, who helped create the device, say it could offer gadget designers a way to create faster devices with reduced power consumption.

Previous attempts to use carbon nanotube transistors for memory storage hit a stumbling block because they had low operational speed and short memory retention times.

By using a mechanical arm to charge the electrode - which operates much faster than conventional memory devices - scientists have been able to overcome these problems.

The research, carried out in collaboration with Konkuk University and Seoul National University, Korea, was published in Nature Communications and supported by EaStCHEM.

Professor Eleanor Campbell of the University of Edinburgh's School of Chemistry, who took part in the study, said: "This is a novel approach to designing memory storage devices. Using a mechanical method combined with the benefits of nanotechnology enables a system with superior speed and energy efficiency compared with existing devices."
-end-


University of Edinburgh

Related Carbon Nanotube Articles from Brightsurf:

Scientists grow carbon nanotube forest much longer than any other
Carbon nanotube (CNT) forests are a solution to scaling up the production of CNTs, which are becoming a staple in many industries.

Neurons in spinal-cord injuries are reconnected in vivo via carbon nanotube sponges
Research conducted by two groups at the Center for Cooperative Research in Biomaterials CIC biomaGUNE and one at SISSA, Scuola Internazionale Superiore di Studi Avanzati (Italy), showed that functional materials based on carbon nanotubes offer a possible means for facilitating the reconnecting of neuronal networks damaged as a result of spinal cord injuries.

No limit yet for carbon nanotube fibers
Rice University researchers report advances in their quest to make the best carbon nanotube fibers for industry.

Electrochemical doping: researchers improve carbon nanotube transparent conductors
Skoltech researchers and their colleagues from Aalto University have discovered that electrochemical doping with ionic liquid can significantly enhance the optical and electrical properties of transparent conductors made of single-walled carbon nanotube films.

No touching: Skoltech researchers find contactless way to measure thickness of carbon nanotube films
Scientists from Skoltech and their colleagues from Russia and Finland have figured out a non-invasive way to measure the thickness of single-walled carbon nanotube films, which may find applications in a wide variety of fields from solar energy to smart textiles.

Carbon nanotube transistors make the leap from lab to factory floor
A technique for making carbon nanotube transistors in large quantities paves the way for more energy efficient, 3D microprocessors.

New study presents hygroscopic micro/nanolenses along carbon nanotube ion channels
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has introduced a novel technology, which allows carbon nanotubes (CNTs) to be easily observed under room temperature.

Improving the electrical and mechanical properties of carbon-nanotube-based fibers
University of Illinois researchers at the Beckman Institute for Advanced Science and Technology recently developed a technique that can be used to build carbon-nanotube-based fibers by creating chemical crosslinks.

Graphene substrate improves the conductivity of carbon nanotube network
Scientists at Aalto University, Finland, and the University of Vienna, Austria, have combined graphene and single-walled carbon nanotubes into a transparent hybrid material with conductivity higher than either component exhibits separately.

Cooling nanotube resonators with electrons
In a study in Nature Physics, ICFO researchers report on a technique that uses electron transport to cool a nanomechanical resonator near the quantum regime.

Read More: Carbon Nanotube News and Carbon Nanotube Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.