Nav: Home

Gold standards for nanoparticles

March 28, 2017

Expanding the potential of gold nanoparticles for a range of uses requires methods to stabilize the clusters and control their size. Researchers at KAUST reveal how simple organic citrate ions, derived from readily available citric acid, can interact with the gold atoms to yield the stable nanoparticles needed for further research.

Such clusters of gold atoms are proving increasingly useful as catalysts, drug delivery systems, anti-cancer agents and components of solar cells among other applications.

"The potential applications of gold nanoparticles could have a huge impact on society, and understanding stabilizers like citrate might be crucial to progress," said Jean-Marie Basset, Director of the KAUST Catalysis Center and Distinguished Professor of Chemical Science, and a member of the research team, Professor Luigi Cavallo.

Along with colleagues at The University's Core Labs and coworkers in UK, Switzerland and France, the researchers have shown different ways that citrate ions can bind to gold atoms at the surface of nanoparticles1. They also discovered how to influence the binding mode by controlling the ratio of the nanoparticle/citrate ions. Different modes can influence the structures and properties of nanoparticles.

"The experimental and theoretical characterization of these systems is challenging due to the flexible nature of the interaction between citrate and gold," said Basset. He explained that collaboration between KAUST teams was essential for meeting the challenges, allowing creation of the stabilized nanoparticles and their analysis and imaging at high resolution (see image).

One reason for gold's usefulness in medical applications is its chemically stable nature. Other researchers have shown that this stability allows gold to carry drugs through the body without causing chemical side effects.

Controlling the structure of gold nanoparticles could also fine tune their interaction with light to exploit a phenomenon known as surface plasmon resonance. This may allow the energy of light to be harnessed to kill cancer cells. Attaching antibodies can guide the nanoparticles to the specific cells that need treatment. The type of interaction with light depends on nanoparticle structure and could also yield applications in solar cells and micro-electronics.

The researchers consider that the insights from this work at KAUST may also be applicable to some other metals and plan to explore this as the next phase of the research. "We want to take on that wider challenge," said Basset.
-end-


King Abdullah University of Science & Technology (KAUST)

Related Nanoparticles Articles:

Chemists perform surgery on nanoparticles
A team of chemists led by Carnegie Mellon's Rongchao Jin has for the first time conducted site-specific surgery on a nanoparticle.
Nanoparticles remain unpredictable
The way that nanoparticles behave in the environment is extremely complex.
Gold standards for nanoparticles
KAUST researchers reveal how small organic 'citrate' ions can stabilize gold nanoparticles, assisting research on the structures' potential.
Lipid nanoparticles for gene therapy
Twenty-five years have passed since the publication of the first work on solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as a system for delivering drugs.
Nanoparticles hitchhiking their way along strands of hair
In shampoo ads, hair always looks like a shiny, smooth surface.
Better contrast agents based on nanoparticles
Scientists at the University of Basel have developed nanoparticles which can serve as efficient contrast agents for magnetic resonance imaging.
Gentle cancer treatment using nanoparticles works
Cancer treatments based on laser irridation of tiny nanoparticles that are injected directly into the cancer tumor are working and can destroy the cancer from within.
Radiation-guided nanoparticles zero in on metastatic cancer
Zap a tumor with radiation to trigger expression of a molecule, then attack that molecule with a drug-loaded nanoparticle.
Nanoparticles can grow in cubic shape
Use of nanoparticles in many applications, e.g. for catalysis, relies on the surface area of the particles.
Nanoparticles deliver anticancer cluster bombs
Scientists have devised a triple-stage 'cluster bomb' system for delivering the chemotherapy drug cisplatin, via tiny nanoparticles designed to break up when they reach a tumor.

Related Nanoparticles Reading:

Characterization of Nanoparticles Intended for Drug Delivery (Methods in Molecular Biology)
by Scott E. McNeil (Editor)

This second edition volume expands on the first edition by providing up-to-date protocols to characterize nanomaterials used as drug delivery agents. The chapters in this book are divided into 5 parts and cover topics such as: advances and obstacles in nanomedicine research; methods to test sterility and endotoxin, physicochemical features, immunological effects, drug release, and in vivo efficacy. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents,... View Details


Nanoparticles: From Theory to Application
by Günter Schmid (Editor)

Very small particles are able to show astonishing properties. For example, gold atoms can be combined like strings of pearls, while nanoparticles can form one-, two- and three-dimensional layers. These assemblies can be used, for instance, as semiconductors, but other electronic as well as optical properties are possible.
An introduction to the booming field of "nanoworld" or "nanoscience", from fundamental principles to their use in novel applications.
With its clear structure and comprehensive coverage, backed by numerous examples from recent literature, this is a prime reference... View Details


Gold Nanoparticles for Physics, Chemistry and Biology
by Catherine Louis (Author), Catherine Louis (Editor), Olivier Pluchery (Editor)

Gold Nanoparticles for Physics, Chemistry and Biology offers an overview of recent research into gold nanoparticles, covering their discovery, usage and contemporary practical applications.

This Second Edition begins with a history of over 2000 years of the use of gold nanoparticles, with a review of the specific properties which make gold unique. Updated chapters include gold nanoparticle preparation methods, their plasmon resonance and thermo-optical properties, their catalytic properties and their future technological applications. New chapters have been included, and reveal... View Details


Nanoparticles (De Gruyter Textbook)
by Raz Jelinek (Author)

Nanoparticles presents the variety of nanoparticle families, structures, and functions. The book discusses nanoparticles made of semiconductors, metals, metal-oxides, organics, biological and hybrid constituents. Through a wealth of examples and case studies, readers that are not necessarily active or experts in this area acquire a broad overview of this exciting field at the interface between scientific research and practical technologies.

View Details


Nanoparticles - Nanocomposites – Nanomaterials: An Introduction for Beginners
by Dieter Vollath (Author)

Meeting the demand for a readily understandable introduction to nanomaterials and nanotechnology, this textbook specifically addresses the needs of students - and engineers - who need to get the gist of nanoscale phenomena in materials without having to delve too deeply into the physical and chemical details.

The book begins with an overview of the consequences of small particle size, such as the growing importance of surface effects, and covers successful, field-tested synthesis techniques of nanomaterials. The largest part of the book is devoted to the particular magnetic, optical,... View Details


Advanced Polymer Nanoparticles: Synthesis and Surface Modifications
by Vikas Mittal (Editor)

Polymer latex particles continue to become increasingly important in numerous commercial applications. Advanced synthesis techniques are the key to developing new functionality for nanoparticles. These methods make it possible to tailor the size, chemical composition, or properties of these particles, as well as the molecular weight of the polymer chain as a whole, based on given requirements.

Advanced Polymer Nanoparticles: Synthesis and Surface Modifications summarizes important developments in the advanced synthesis and surface modification techniques... View Details


Metal Nanoparticles in Pharma
by Mahendra Rai Ph.D (Editor), Ranjita Shegokar Ph.D (Editor)

Completely dedicated to the biomedical applications of metal nanoparticles, this book covers the different toxicity problems found in healthcare situations and also provides comprehensive info on the use of metal nanoparticles in treating various diseases. Metal Nanoparticles in Pharma is the first edited volume to set up the discussion for a clinical setting and to target a pharmaceutical audience of academic and industry-based researchers. View Details


Gas Phase Nanoparticle Synthesis
by Claes Granqvist (Editor), Laszlo Kish (Editor), William Marlow (Editor)

This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.... View Details


Smart Nanoparticles for Biomedicine (Micro and Nano Technologies)
by Gianni Ciofani (Editor)

Nanotechnology has enabled an unprecedented control of the interactions between materials and biological entities, from the microscale down to the molecular level. Nanosurfaces and nanostructures have been used to mimic or interact with biological microenvironments, to support specific biological functions such as cell adhesion, mobility and differentiation, as well as tissue healing. Recently, a new paradigm has been proposed for nanomedicine to exploit the intrinsic properties of nanomaterials as active devices rather than as passive structural units or carriers for medications. Here,... View Details


Nanoparticles: Workhorses of Nanoscience
by Celso de Mello Donegá (Editor)

This book can be roughly divided into three parts: fundamental physico-chemical and physical principles of Nanoscience, chemistry and synthesis of nanoparticles, and techniques to study nanoparticles. The first chapter is concerned with the origin of the size dependence of the properties of nanomaterials, explaining it in terms of two fundamental nanoscale effects. This chapter also serves as a general introduction to the book, briefly addressing the definition and classification of nanomaterials and the techniques used to fabricate and study them. Chapter 2 lays out the theoretical... View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Big Five
What are the five biggest global challenges we face right now — and what can we do about them? This hour, TED speakers explore some radical solutions to these enduring problems. Guests include geoengineer Tim Kruger, president of the International Rescue Committee David Miliband, political scientist Ian Bremmer, global data analyst Sarah Menker, and historian Rutger Bregman.
Now Playing: Science for the People

#456 Inside a Conservation NGO
This week we take a close look at conservation NGOS: what they do, how they work, and - most importantly - why we need them. We'll be speaking with Shyla Raghav, the Climate Change Lead at Conservation International, about using strategy and policy to tackle climate change. Then we'll speak with Rebecca Shaw, Lead Scientist at the World Wildlife Fund, about how and why you should get involved with conservation initiatives.