Nav: Home

Information storage with a nanoscale twist

March 28, 2017

Swirling objects known as magnetic vortices and skyrmions can be miniaturized without sacrificing mobility, a KAUST-led international research team has found. These findings are relevant for future "race-track" memory technologies that feature massive densities of moveable magnetic bits1.

In nanometer-thin magnetic films, such as iron-nickel alloys, the region separating two magnetic domains or defects can adopt tiny whirlpool-like patterns. Some of these patterns, called skyrmions, resist unraveling even when packed tightly together, and they can also be directed with small electric currents. These features have made the skyrmions attractive targets for research into high-capacity memory devices. One concept zips skyrmions around a loop then past a stationary read/write head to eliminate the need for mechanical components used in today's hard drives.

Aurelien Manchon, an Associate Professor of Material Science and Engineering at the University, notes that one of the main reasons for the appeal of skyrmions is their ability to avoid defects or uneven patches in thin films that would normally trap or "pin" a magnetic charge. However, this agility is compromised when researchers try to shrink skyrmions to the smallest size possible--the smaller they get the more likely they are to get pinned because of the relative increase in defect site dimensions.

To improve these devices, Manchon and international collaborators tried to understand the fundamental momentum transfer between charge currents and magnetic whirlpools.

Using intense x-rays generated at Berkeley University's Advanced Light Source, the team captured time-resolved images of whirlpool patterns called magnetic vortices as they gyrated along a nanometer-wide half-ring track. By pinpointing the position of the vortex core from the imaging sequence, they obtained accurate data about a parameter, known as the non-adiabatic spin-transfer torque, which is crucial for electrical manipulations.

Surprisingly, the measured non-adiabatic torque was far greater than values predicted by existing models. To account for this discrepancy, a theoretical analysis by Manchon showed the extra twisting was provided by another force--the emergent Hall effect, which occurs when electrons travel through a magnetic whirlpool.

"In a nutshell, electrons experience a force that pushes them sideways, but it doesn't come from the local magnetization itself; instead it arises from the topology of the magnetic texture," explained Manchon. "This effect produces an extra spin-polarized current that exerts a torque on the whirlpool."

The researchers found that the additional non-adiabatic torque intensifies when the size of the whirlpool is reduced--a driving force that may offer a way to overcome defect pinning at the nanoscale. "This might be an interesting compromise to seek, especially in the context of skyrmion-based data storage," added Manchon.
-end-


King Abdullah University of Science & Technology (KAUST)

Related Electrons Articles:

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.
Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.
Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.
Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.
Using light to put a twist on electrons
Method with polarized light can create and measure nonsymmetrical states in a layered material.
What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.
Electrons in rapid motion
Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique.
Taming electrons with bacteria parts
In a new study, scientists at the MSU-DOE Plant Research Laboratory report a new synthetic system that could guide electron transfer over long distances.
Hot electrons harvested without tricks
Semiconductors convert energy from photons into an electron current. However, some photons carry too much energy for the material to absorb.
Cooling nanotube resonators with electrons
In a study in Nature Physics, ICFO researchers report on a technique that uses electron transport to cool a nanomechanical resonator near the quantum regime.
More Electrons News and Electrons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.