Nav: Home

Key research priorities for agricultural microbiomes identified

March 28, 2017

A coordinated effort to understand plant microbiomes could boost plant health and agricultural productivity, according to a new Perspective publishing March 28 in the open access journal PLOS Biology by Posy Busby of Oregon State University in Corvallis and colleagues at eight other research institutions.

Like humans, plants live in intimate contact with microbes, including beneficial bacteria and fungi that enhance plant growth and disease resistance. While the importance of a few individual bacterial species, such as the nitrogen-fixing rhizobia of legumes, is widely understood, relatively little is known about the structure, function, and perturbations of the complex microbial communities that surround roots and dwell on leaves.

To help understand how beneficial microbes can be harnessed in sustainable agriculture, Busby and colleagues call for a plant microbiome project modeled after the recently completed Human Microbiome Project, which provides a reference set of human microbial genome sequences to develop new tools for analyzing those genomes. The plant microbiome effort will focus on understanding relationships that impact plant growth and could aid agricultural production, including efficiency of nutrient use, stress tolerance, and disease resistance. Although some work has been done, the authors note, "there has been no coordinated effort to consolidate and translate new ideas into practical solutions for farmers."

To that end, they propose a set of five broad research priorities:
    --Develop model host microbiome systems for crop and non-crop plants. Multiple models are needed to span the range of crop plants, which include grains, vegetables, fruits, and economically important tree species. Tools for creating and working with these systems, and data derived from them, should be available in public databases.

    --Define the "core microbiome," the set of organisms found in most samples of a particular set of plants, in order to identify relationships that should be prioritized for further study. Comparison of core microbiomes is likely to reveal further insights into both genetic and environmental influences on microbiome composition.

    --Seek to understand the rules of microbiome assembly and resilience. As part of this goal, the authors recommend prioritizing research aimed at designing synthetic microbial communities that can successfully colonize plant organs and persist long enough in natural environments to benefit the host.

    --Determine the functional mechanisms at work in agricultural microbiome interactions, to learn how these interactions promote nutrient exchange, drought tolerance, and other features of microbiome activity.

    --Characterize the complex interactions among plant genotype, environmental factors, farm management strategies, and microbiome composition to learn how each influences the other. "The definition of a 'healthy' or 'beneficial' microbiome may depend on specific environmental challenges faced by the plant," the authors point out, or alternatively, there may be a "generic" microbiome whose composition promotes growth and health under a wide range of conditions.

"More so than ever before, the tools, technologies, and funding are now in place to tackle the fundamental questions in agricultural biome research," they conclude. "By encouraging the pursuit of these five key research priorities, we aim to accelerate the development of agricultural microbiome manipulations and management strategies that will increase the sustainability and productivity of global agriculture."
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Biology: http://dx.doi.org/10.1371/journal.pbio.2001793

Citation: Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, et al. (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15(3): e2001793. doi:10.1371/journal.pbio.2001793

Funding: National Science Foundation http://www.nsf.org (grant number 1519383). Received by PEB and CS. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. National Science Foundation http://www.nsf.org (grant number 1314095). Received by PEB. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Microbiome Articles:

A reliable clock for your microbiome
The microbiome is a treasure trove of information about human health and disease, but getting it to reveal its secrets is challenging.
Uncovering drug-like small molecules in the human microbiome
Gene clusters once hidden in the human microbiome, whose products resemble clinically used drugs, are now more discoverable, thanks to a new bioinformatics approach.
Cooking food alters the microbiome
Scientists at UC San Francisco and Harvard University have shown for the first time that cooking food fundamentally alters the microbiomes of both mice and humans, a finding with implications both for optimizing our microbial health and for understanding how cooking may have altered the evolution of the our microbiomes during human prehistory.
Genetic risk is associated with differences in gut microbiome
Children with a high genetic risk of developing type 1 diabetes have different gut microbiomes than children with a low risk, according to a new study from Linköping University in Sweden and the University of Florida in the US.
Genetic census of the human microbiome
Scientists have analyzed the genetic repertoire of bacteria in the human mouth and gut.
Microbiome diversity builds a better mouse model
The path to building a better mouse model starts with the microorganisms that colonize it.
Mouse genetics influences the microbiome more than environment
Genetics has a greater impact on the microbiome than maternal birth environment, at least in mice, according to a study published this week in Applied and Environmental Microbiology.
Can mathematics help us understand the complexity of our microbiome?
In humans, the gut microbiome is an ecosystem of hundreds to thousands of microbial species living within the gastrointestinal tract, influencing health and even longevity.
Assembly of the human oral microbiome age 1 to 12
At the 97th General Session & Exhibition of the International Association for Dental Research (IADR), held in conjunction with the 48th Annual Meeting of the American Association for Dental Research (AADR) and the 43rd Annual Meeting of the Canadian Association for Dental Research (CADR), Ann Griffen, Ohio State University, Columbus, USA, gave an oral presentation on ''Assembly of the Human Oral Microbiome Age 1 to 12.'
Just a phage? How bacteria's predators can shape the gut microbiome
A phage can have a profound impact on the dynamics of the gut microbiome, not only affecting certain species directly but also having a cascading effect on others.
More Microbiome News and Microbiome Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.