Nav: Home

Key research priorities for agricultural microbiomes identified

March 28, 2017

A coordinated effort to understand plant microbiomes could boost plant health and agricultural productivity, according to a new Perspective publishing March 28 in the open access journal PLOS Biology by Posy Busby of Oregon State University in Corvallis and colleagues at eight other research institutions.

Like humans, plants live in intimate contact with microbes, including beneficial bacteria and fungi that enhance plant growth and disease resistance. While the importance of a few individual bacterial species, such as the nitrogen-fixing rhizobia of legumes, is widely understood, relatively little is known about the structure, function, and perturbations of the complex microbial communities that surround roots and dwell on leaves.

To help understand how beneficial microbes can be harnessed in sustainable agriculture, Busby and colleagues call for a plant microbiome project modeled after the recently completed Human Microbiome Project, which provides a reference set of human microbial genome sequences to develop new tools for analyzing those genomes. The plant microbiome effort will focus on understanding relationships that impact plant growth and could aid agricultural production, including efficiency of nutrient use, stress tolerance, and disease resistance. Although some work has been done, the authors note, "there has been no coordinated effort to consolidate and translate new ideas into practical solutions for farmers."

To that end, they propose a set of five broad research priorities:
    --Develop model host microbiome systems for crop and non-crop plants. Multiple models are needed to span the range of crop plants, which include grains, vegetables, fruits, and economically important tree species. Tools for creating and working with these systems, and data derived from them, should be available in public databases.

    --Define the "core microbiome," the set of organisms found in most samples of a particular set of plants, in order to identify relationships that should be prioritized for further study. Comparison of core microbiomes is likely to reveal further insights into both genetic and environmental influences on microbiome composition.

    --Seek to understand the rules of microbiome assembly and resilience. As part of this goal, the authors recommend prioritizing research aimed at designing synthetic microbial communities that can successfully colonize plant organs and persist long enough in natural environments to benefit the host.

    --Determine the functional mechanisms at work in agricultural microbiome interactions, to learn how these interactions promote nutrient exchange, drought tolerance, and other features of microbiome activity.

    --Characterize the complex interactions among plant genotype, environmental factors, farm management strategies, and microbiome composition to learn how each influences the other. "The definition of a 'healthy' or 'beneficial' microbiome may depend on specific environmental challenges faced by the plant," the authors point out, or alternatively, there may be a "generic" microbiome whose composition promotes growth and health under a wide range of conditions.

"More so than ever before, the tools, technologies, and funding are now in place to tackle the fundamental questions in agricultural biome research," they conclude. "By encouraging the pursuit of these five key research priorities, we aim to accelerate the development of agricultural microbiome manipulations and management strategies that will increase the sustainability and productivity of global agriculture."
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Biology: http://dx.doi.org/10.1371/journal.pbio.2001793

Citation: Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, et al. (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15(3): e2001793. doi:10.1371/journal.pbio.2001793

Funding: National Science Foundation http://www.nsf.org (grant number 1519383). Received by PEB and CS. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. National Science Foundation http://www.nsf.org (grant number 1314095). Received by PEB. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Microbiome Articles:

Diet, nutrition have profound effects on gut microbiome
A new literature review from scientists at George Washington University and the National Institute of Standards and Technology suggests that nutrition and diet have a profound impact on the microbial composition of the gut.
Researchers uncover the moscow subway microbiome
Recently, a group of ITMO University researchers has looked into the microbiome of the Moscow Subway.
Study provides first look at sperm microbiome using RNA sequencing
A new collaborative study published by a research team from the Wayne State University School of Medicine, the CReATe Fertility Centre and the University of Massachusetts Amherst provides the first in-depth look at the microbiome of human sperm utilizing RNA sequencing with sufficient sensitivity to identify contamination and pathogenic bacterial colonization.
What we're learning about the reproductive microbiome
Most research has focused on the oral, skin, and gut microbiomes, but bacteria, viruses, and fungi living within our reproductive systems may also affect sperm quality, fertilization, embryo implantation, and other aspects of conception and reproduction.
New metabolic pathway discovered in rumen microbiome
Cows can adapt themselves to a fluctuating sodium content in their feed.
Harnessing the microbiome to improve stroke recovery
Supplementing the body's short chain fatty acids can improve stroke recovery, according to research in mice recently published in JNeurosci.
How do you cultivate a healthy plant microbiome?
Crops today never see their parents' microbiome, so how do they develop a leaf microbial community that's healthy and resistant to invasion by pathogens?
When your microbiome and your genome aren't a good combination
Research carried out by a team led by Osaka University has shown that various Prevotella species, along with several specific genes and biological pathways, are enriched in the gut microbiota of Japanese patients with rheumatoid arthritis.
New findings on gut microbiome's interactions with GI diseases
A study from the Texas A&M College of Veterinary Medicine & Biomedical Sciences offers new insight on how the gut bacteria of dogs interact with a healthy vs. unhealthy GI tract, which could contribute to the development of new therapies for GI diseases in both dogs and humans.
Shark skin microbiome resists infection
No evidence of infection found in the bacterial community around shark wounds.
More Microbiome News and Microbiome Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.