Nav: Home

Legos and origami inspire next-generation materials

March 28, 2017

Inspired by the fun of playing with Legos, an international team of researchers from Tianjin University of Technology and Harvard University have used the idea of assembling building-blocks to make the promise of next-generation materials a practical reality.

Publishing online in the journal Proceedings of the National Academy of Sciences Mar, 20, Nan Yang from the Laboratory for the Design and Intelligent Control of Advanced Mechatronical Systems and Jesse Silverberg from the Wyss Institute for Biologically Inspired Engineering removed a key bottleneck slowing down the translation of scientific progress to commercial applications.

Silverberg described it like this: "Metamaterials are driving a revolution in material science. The current approach of building every-day stuff turns out to be limited because the materials we work with have a relatively narrow range of properties and capabilities."

Metamaterials go beyond what's found in nature by assembling simple elements into repeating patterns. At large scales, these smaller components influence the larger construction in unusual ways. Yang noted "The variety of applications is growing. Today we see mechanical metamaterials used to shape the flow of vibrational waves like earthquakes to protect buildings. Tomorrow, who knows what will be next."

The researchers, however, were concerned that these discoveries haven't been moving from the lab to the market fast enough. A challenge they noted was the time and difficulty of designing for real-world applications.

A few years ago, origami - the art of paper-folding - was recognized for its ability to rapidly convert flat sheets into 3D patterns with unusual metamaterial properties. "While easy to fold, the time required to find good designs for practical problems is often too costly," said Silverberg. "Suppose you wanted a mechanical metamaterial to absorb impact during a car crash. What's the best design for that? And even if you find a good folding pattern, does it even fit with the car's chassis?"

Both Yang and Silverberg have young children. They described their 'ah-ha' moment like this: "We were working late one night over Skype and we realized the solution was literally on the floor in front of us. What if we could build metamaterials like our kids build with Legos?"

This insight led the researchers to design a standard set of building-blocks. "We started designing a basic unit, kind of like the classic 2-by-4 Lego brick, but instead of making them in different colors, we gave them different mechanical properties. A stiff one, a soft one, etc," said Silverberg. Once designed, the team was able to create larger and more elaborate structures the same way their children were creating multi-colored ships and robots.

As examples, the researchers showed how to assemble two different types of mechanical `cloaking materials.' They also gave examples of how a pre-determined set of properties can be engineered into arbitrary 3D structures, a highly elusive challenge since the beginning of metamaterial research.

Yang went on, "Now that have a basic strategy, we're working out the design for even more 'bricks' and methods to rapidly assemble them." Silverberg added, "Looking ahead, we foresee tools that allow anyone with a computer to easily design complex metamaterials."
Yang's contribution to the research, "Decoupling local mechanics from large-scale structure in modular metamaterials" was supported by Tianjin Natural Science Foundation and the National Natural Science Foundation of China. Silverberg was independently funded.

Media contact (China): Nan Yang
Media contact (USA): Jesse L. Silverberg

Tianjin University of Technology

Related Metamaterials Articles:

VR and AR devices at 1/100 the cost and 1/10,000 the thickness in the works
Professor Junsuk Rho of the departments of mechanical engineering and chemical engineering and doctoral student in mechanical engineering Gwanho Yoon at POSTECH with the research team at Korea University have jointly developed moldable nanomaterials and a printing technology using metamaterials, allowing the commercialization of inexpensive and thin VR and AR devices.
Virtualized metamaterials opens door for acoustics application and beyond
Scientists from the Hong Kong University of Science and Technology (HKUST) have realized what they called a virtualized acoustic metamaterial, in digitizing material response to an impulse response stored in a software program.
In acoustic waves, engineers break reciprocity with 'spacetime-varying metamaterials'
Working in an emerging field known to as 'spacetime-varying metamaterials,' University at Buffalo engineers have demonstrated the ability to break reciprocity in acoustic waves.
Induced flaws in metamaterials can produce useful textures and behavior
A new Tel Aviv University study shows how induced defects in metamaterials -- artificial materials the properties of which are different from those in nature -- also produce radically different consistencies and behaviors.
Researchers use metamaterials to create two-part optical security features
Researchers have developed advanced optical security features that use a two-piece metamaterial system to create a difficult-to-replicate optical phenomenon.
Artificial intelligence (AI) designs metamaterials used in the invisibility cloak
The research group of Prof. Junsuk Rho, Sunae So and Jungho Mun of Department of Mechanical Engineering and Department of Chemical Engineering at POSTECH developed a design with a higher degree of freedom which allows to choose materials and to design photonic structures arbitrarily by using Deep Learning.
Scientists take a 'metamaterials' approach to earthquake damage
At the SSA 2019 Annual Meeting, seismologists from around the world will discuss how metamaterial theory might be applied to everything from developing deflective barriers to manipulating the layout of buildings within a city as a way to minimize the impact of damaging surface seismic waves.
Fast and selective optical heating for functional nanomagnetic metamaterials
In a recent article published in Nanoscale, researchers from the Nanomagnetism group at nanoGUNE demonstrate the use of hybrid magnetic-plasmonic elements to facilitate contactless and selective temperature control in magnetic functional metamaterials.
Researchers 3D print metamaterials with novel optical properties
A team of engineers has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is possible using conventional optical or electronic materials.
Intelligent metamaterials behave like electrostatic chameleons
Chinese physicists have developed so-called metashells made of smart, adaptable metamaterials.
More Metamaterials News and Metamaterials Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at