Viruses in the oceanic basement

March 28, 2017

A team of scientists from the University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology (SOEST) showed for the first time that many novel viruses are present in the fluids circulating deep in the rocky crust of the seafloor known as the ocean basement. Their recently published study also provides evidence that the viruses are actively infecting the many unusual microorganisms that live in the basement.

Viruses are often thought of as a nuisance because of the familiar diseases they cause -- common colds and the flu, for example. However, viruses infect every living thing on earth and viral infections have been one of the major creative forces that shape the nature of life on our planet. The first viruses likely originated at the dawn of life billions of years ago. Through relentless cycles of infections, viruses have helped drive the evolution of the diverse life found on our planet and their influence continues to this day.

"The ocean basement was one of the last major habitats on Earth for which we had no information on the number and types of viruses present," said lead author Olivia Nigro, post-doctoral researcher of oceanography. "The volume of water that moves under the seafloor through the ocean basement is enormous. Annually, it is equivalent to the flow of all the rivers on the planet combined."

Hydrothermal vents and plumes, like those found in Hawaii at Lihi seamount, are the most spectacular evidence of that flow.

"Despite the massive scale of flow through the seafloor and its importance for understanding the chemical balance of our oceans, our view of the unusual microorganisms that live in this fluid and how they interact is still very sketchy," said Grieg Steward, oceanography professor and lead investigator for the project.

It is very challenging to get a clean sample of water from rocks buried under hundreds of feet of sediment at the bottom of the Pacific Ocean. To do this, the team took advantage of devices designed to plug holes drilled deep into the seafloor called Circulation Obviation Retrofit Kits, or CORKs. The bottom of the CORKs seal off the fluids in the basement and transport samples of that fluid to a sampling port that extends a few meters above the seafloor. The CORKs sampled were over one-and-half miles under the ocean and required an autonomous underwater vehicle to connect the sample vessels, open and close the valves, and return the samples to the surface.

The researchers used microscope and DNA analyses to count and characterize the viruses in the fluids and to detect viral DNA inside of cells. This pioneering work provided the first look at the diverse and unusual viruses infecting the microorganisms in warm basaltic crust, which forms the very foundation of the Hawaiian Islands. Surprisingly, many of them resemble the lemon- and rod-shaped viruses found in hot springs on land, like those in Yellowstone National Park, even though these two habitats are very far apart.

"One of the likely places for the origin of the first living cells and viruses was in hydrothermally active seafloor," said Nigro. "Analyzing viruses from this remote habitat helps us flesh out the deep branches on the virus family tree so we can better understand their origins, their contributions to the history of life, and how they influence the activities of microbial life in the crust."

"The data we obtained provides clues about the nature of a microbial world that lies hidden deep in the roots of these volcanic islands," said Steward. "Through their interactions with rock and water, these deep-dwelling communities of microbes and their viruses are invisible engineers contributing to the chemical balance of our oceans."
-end-
New funding from the National Science Foundation will allow the researchers to collect additional samples in the Atlantic Ocean. The conditions in the crust there are very different from those in the Pacific oceanic basement, and the team hopes to determine how these different conditions influence the community of the microbes and their viruses.

This work was inspired by and was made possible in part by the pioneering work of the late James P. Cowen, an esteemed and long-serving faculty member in the Department of Oceanography at the University of Hawaii. The researchers dedicated the paper to him in recognition of the encouragement and support that he provided to the team that was instrumental to the success of the project.

Nigro OD, Jungbluth SP, Lin H-T, Hsieh C-C, Miranda JA, Schvarcz CR, Rappé MS, Steward GF. 2017. Viruses in the oceanic basement. mBio 8:e02129-16. https://doi.org/ 10.1128/mBio.02129-16.

University of Hawaii at Manoa

Related Microorganisms Articles from Brightsurf:

A more resistant material against microorganisms is created to restore cultural heritage
The study was performed by a research team at the University Research Institute into Fine Chemistry and Nanochemistry at the University of Cordoba and Seville's Institute of Natural Resources and Agrobiology of the Spanish National Research Council

NYUAD study finds gene targets to combat microorganisms binding to underwater surfaces
A group of synthetic biologists at NYU Abu Dhabi (NYUAD) have identified new genetic targets that could lead to safe, biologically-based approaches to combat marine biofouling - the process of sea-based microorganisms, plants, or algae binding to underwater surfaces.

Less flocking behavior among microorganisms reduces the risk of being eaten
When algae and bacteria with different swimming gaits gather in large groups, their flocking behaviour diminishes, something that may reduce the risk of falling victim to aquatic predators.

Are vultures spreaders of microbes that put human health at risk?
A new analysis published in IBIS examines whether bacteria, viruses, and other microorganisms that are present in wild vultures cause disease in the birds, and whether vultures play a role in spreading or preventing infectious diseases to humans and other animal species.

Timing key in understanding plant microbiomes
Oregon State University researchers have made a key advance in understanding how timing impacts the way microorganisms colonize plants, a step that could provide farmers an important tool to boost agricultural production.

Advances in the production of minor ginsenosides using microorganisms and their enzymes
Advances in the Production of Minor Ginsenosides Using Microorganisms and Their Enzymes - BIO Integration https://bio-integration.org/wp-content/uploads/2020/05/bioi20200007.pdf Announcing a new article publication for BIO Integration journal.

Study shows how microorganisms survive in harsh environments
In northern Chile's Atacama Desert, one of the driest places on Earth, microorganisms are able to eke out an existence by extracting water from the rocks they colonize.

Microorganisms in parched regions extract needed water from colonized rocks
Cyanobacteria living in rocks in Chile's Atacama Desert extract water from the minerals they colonize and, in doing so, change the phase of the material from gypsum to anhydrite.

Verticillium wilt fungus killing millions of trees is actually an army of microorganisms
A research project studied the microbiome of olive tree roots and concluded that Verticillium wilt is fueled by a community of microorganisms that team up to attack plants, thus reassessing the way this problem is dealt with

New drug formulation could treat Candida infections
With antimicrobial resistance (AMR) increasing around the world, new research led by the University of Bristol has shown a new drug formulation could possibly be used in antifungal treatments against Candida infections.

Read More: Microorganisms News and Microorganisms Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.