Ragweed casts shade on soy production

March 28, 2018

Ragweed, its pollen potent to allergy sufferers, might be more than a source of sneezes. In the Midwest, the plant may pose a threat to soybean production.

Scientists have found that ragweed can drastically reduce soybean yield.

"It wasn't really a weed we were worried about too much," says Ethann Barnes, a graduate research assistant in agronomy and horticulture at the University of Nebraska-Lincoln. "We didn't expect it to be this competitive."

Weeds compete with crops for light, water, and nutrients. Common ragweed, which is taller than soy, has historically been overlooked as a threat. And little is known about its impact on soy in the Midwest.

So, the scientists struck out to a soybean field near Mead, Nebraska. In 2015 and 2016, they planted soybean and ragweed in late spring. Within the experimental plots, ragweed density ranged from no plants (a weed-free control) to 12 plants per meter (about 39 inches) of the row.

The researchers had two goals: see if ragweed posed a serious threat to soybean, and see if there's a way to estimate the yield loss early in the growing season.

Barnes was surprised by how much the ragweed stifled the soybean in both years. The soybean crops did worse than in previous studies. One ragweed plant every 1.6 feet of soybean row decreased soybean yield by 76% in 2015, and by 40% in 2016. And soybean yield was reduced by 95% in 2015 and 80% in 2016 when common ragweed plants were grown only three inches apart in the soybean row.

During the experiment, there was plenty of water to go around for both plants. So, the scientists think ragweed mostly hurt soybean by starving it of sunlight.

"Whether I was presenting at conferences, or even just at my thesis defense, everyone was very surprised how big of a deal common ragweed could be," says Barnes.

What's more, it was very hard to predict early in the year how the soybean would fare. Barnes found that not until early August could he plug ragweed numbers into an equation and accurately predict what the soybean loss would be.

Now, Barnes and his team are sharing this information with growers in the area. "The ultimate goal of this area of science is for growers to count the number of weeds or make a measurement in their field three weeks into the season. From there they could see whether it's financially a viable option to control their weeds or just leave them in the field," says Barnes. By knowing how much damage the weeds might do, farmers can weigh that loss against the cost of killing the weeds.

More studies will be needed to hone in on the dynamics of ragweed-and other weed--growth. An end goal, he says, is to predict early in the season how weeds will impede crop yields, so farmers can make better decisions on how to manage them. Such estimates could help farmers know if, when, and how much pesticide to apply.

He hopes his study is a step toward that goal. "Hopefully it'll have an immediate impact for farmers, and advance the science of weed competition research."
-end-
The study was published in Agronomy Journal. The University of Nebraska Institute of Agriculture and Natural Resources funded the project.

American Society of Agronomy

Related Soybean Articles from Brightsurf:

Isoflavones in soybean help protect pigs against viral infections
Pigs that eat soybean as a regular part of their diet may be better protected against viral pathogens, a new study from University of Illinois shows.

Soybean seeding rates and risk
Broad study helps define optimal soybean seeding rates in North America.

Researchers find significant economic losses due to soybean diseases
Economic losses due to soybean diseases in the United States from 1996 to 2016 amounted to more than $95 billion, according to a team of researchers in Penn State's College of Agricultural Sciences who examined the long-term impact of soybean diseases on production in the U.S.

Soybean Innovation Lab provides knowledge that assists soybean production in Africa
The Soybean Innovation Lab (SIL), housed in the College of Agricultural, Consumer and Environmental Sciences at the University of Illinois, is funded by USAID's Feed the Future initiative to help bring research-based innovation and technology to develop soybean production in Sub-Saharan Africa.

Fungus application thwarts major soybean pest, study finds
The soybean cyst nematode sucks the nutrients out of soybean roots, causing more than $1 billion in soybean yield losses in the U.S. each year.

Organic soybean producers can be competitive using little or no tillage
Organic soybean producers using no-till and reduced-tillage production methods that incorporate cover crops -- strategies that protect soil health and water quality -- can achieve similar yields at competitive costs compared to tillage-based production.

Genes controlling mycorrhizal colonization discovered in soybean
Like most plants, soybeans pair up with soil fungi in a symbiotic mycorrhizal relationship.

Complete genome of devastating soybean pathogen assembled
An international research collaboration has successfully assembled the complete genome sequence of the pathogen that causes the devastating disease Asian soybean rust.

Chinese scientists update soybean genome to a golden reference
Soybean is one of the most important crops worldwide. A high-quality reference genome will facilitate its functional analysis and molecular breeding.

Illinois study identifies a key to soybean cyst nematode growth
The soybean cyst nematode, one of the crop's most destructive pests, isn't like most of its wormy relatives.

Read More: Soybean News and Soybean Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.