Nav: Home

A new method for quantitative estimation of the degree of similarity of coordination polyhedra

March 28, 2018

The problem of the relationship between the structure of materials and their physical properties is one of the global problems of the present day. For many years, researchers of the Lobachevsky University's Faculty of Physics have been working to solve it. In particular, systematic experimental and theoretical studies of the atomic structures of crystals of various materials are conducted at the UNN Department of Crystallography and Experimental Physics.

The traditional approach to describe the atomic structure of a crystal is to use the polyhedral method based on the description of the model of a crystal by means of coordination polyhedra (polyhedra built on atoms as their vertices). An important contribution to the development of this method was made by Academician N.V. Belov, the originator of the crystallographic research at the UNN Faculty of Physics. The polyhedral method greatly simplifies the crystallochemical analysis of complex atomic structures. Crystal structure as a whole is represented in the form of a spatially ordered system of coordination polyhedra, thus, a transition is performed from an atom to a larger structural unit, the coordination polyhedron. On the other hand, the analysis of individual coordination polyhedra makes it possible to determine the symmetry of a particular atom's environment, its energy and chemical state.

In real crystals, coordination polyhedra often have a distorted shape, that is, they differ from ideal polyhedra. The presence of distortion of the coordination polyhedron and its magnitude are due to a variety of factors, including the energy state of the central atom, the chemical and physical features of the environment of the central atom, the mechanical stresses arising in the atomic structure framework of the crystal, and many more. Some types of coordination polyhedra distortion significantly affect the physical properties of materials. For example, distortion of the coordination polyhedron of an activator ion in a laser crystal can lead to a Stark splitting of electron terms, which often results in emission spectra broadening. Thus, the problem arises of giving a quantitative estimate of the distortion in a real coordination polyhedron.

Associate Professor Nikolai Somov and Assistant Professor Pavel Andreev from the Department of Crystallography and Experimental Physics at the Lobachevsky State University of Nizhny Novgorod have proposed a new approach to estimate the degree of similarity of a coordination polyhedron to a certain reference polyhedron. The degree of similarity of a coordination polyhedron is a scalar value strictly equal to unity if the coordination polyhedron is similar to the reference polyhedron; in other cases it takes values from zero to one. The proposed method is implemented in the form of a computer program that is freely available (

The method for quantitative estimation of the degree of similarity of coordination polyhedra was tested on more than 400 crystalline structures of organometallic compounds of pentavalent antimony and bismuth. It was shown that the proposed approach is consistent with one of the main theorems of structural crystal chemistry, and the advantages of the new approach were demonstrated using concrete examples.

Lobachevsky University

Related Physics Articles:

Diamonds coupled using quantum physics
Researchers at TU Wien have succeeded in coupling the specific defects in two such diamonds with one another.
The physics of wealth inequality
A Duke engineering professor has proposed an explanation for why the income disparity in America between the rich and poor continues to grow.
Physics can predict wealth inequality
The 2016 election year highlighted the growing problem of wealth inequality and finding ways to help the people who are falling behind.
Physics: Toward a practical nuclear pendulum
Researchers from Ludwig-Maximilians-Universitaet (LMU) Munich have, for the first time, measured the lifetime of an excited state in the nucleus of an unstable element.
Flowers use physics to attract pollinators
A new review indicates that flowers may be able to manipulate the laws of physics, by playing with light, using mechanical tricks, and harnessing electrostatic forces to attract pollinators.
Physics, photosynthesis and solar cells
A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient.
2-D physics
Physicist Andrea Young receives a 2016 Packard Fellowship to pursue his studies of van der Waals heterostructures.
Cats seem to grasp the laws of physics
Cats understand the principle of cause and effect as well as some elements of physics.
Plasma physics' giant leap
For the first time, scientists are looking at real data -- not computer models, but direct observation -- about what is happening in the fascinating region where the Earth's magnetic field breaks and then joins with the interplanetary magnetic field.
Nuclear physics' interdisciplinary progress
The theoretical view of the structure of the atom nucleus is not carved in stone.

Related Physics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".