Nav: Home

Test for antibiotic associated kidney damage in children with cystic fibrosis identified

March 28, 2018

New research, published in Nature Scientific Reports, conducted by the University and partners highlights effective methods for identifying a common side effect in children receiving drug treatments for Cystic fibrosis.

The genetic disorder, cystic fibrosis (CF) is characterised by secondary bacterial lung infections, often by a specific resistant bacteria, Pseudomonas aeruginosa. Antibiotics known as aminoglycosides have good efficacy against this bacteria and are often used to treat these infections.

However, aminoglycosides are potentially damaging to the kidneys. Despite risk reduction strategies, current or recent aminoglycoside exposure is strongly associated with acute kidney injury (AKI) in children with CF.

Biomarkers

Current methods for assessing kidney injury rely on the measurement of serum creatinine, a measure of kidney filtration. Unfortunately this method only highlights injury once significant damage has already occurred. This is particularly dangerous for children.

To identify patients at increased risk of kidney damage there is a need for the development of improved biomarkers that not only reflect the site of toxicity, but can identify damage at an earlier stage than currently possible.

To help identify biomarkers, researchers from the Universities of Liverpool and University College London, recruited more than 150 children and young adults up to 20 years of age with a confirmed diagnosis of CF. The participants provided urine samples for measurement of specific proteins, KIM-1 and NGAL, at regular outpatient appointments, and before, during and after exposure to clinically-indicated treatment with anaminoglycoside.

The researchers found that the concentrations of both KIM-1 and NGAL increased during exposure to an aminoglycoside. These increases occurred in the absence of increases in serum creatinine, and therefore likely represent renal damage without loss of function, commonly termed 'subclinical AKI'. The baseline (before treatment) concentration of KIM-1 increased with cumulative lifetime aminoglycoside exposure, suggesting it may also identify chronic renal damage.

Useful and non-invasive

The study was led by Dr Steve McWilliam a National Institute of Health Research Academic Clinical Lecturer in Paediatric Clinical Pharmacology from the University of Liverpool's Institute of Translational Medicine based at Alder Hey Children's NHS Foundation Trust.

Of the study Dr McWilliam said: "Our research shows that KIM-1 may be a useful, non-invasive, biomarker of acute and chronic kidney damage associated with exposure to aminoglycosides in patients with CF, but its clinical utility needs to be further evaluated in prospective studies."
-end-
The full paper, entitled "Urinary Biomarkers of Aminoglycoside-Induced Nephrotoxicity in Cystic Fibrosis: Kidney Injury Molecule-1 and Neutrophil Gelatinase-Associated Lipocalin", can be found here https://www.nature.com/articles/s41598-018-23466-4

University of Liverpool

Related Cystic Fibrosis Articles:

Cystic fibrosis alters the structure of mucus in airways
Cystic fibrosis (CF) alters the structure of mucus produced in airway passages.
Cystic fibrosis study offers new understanding of silent changes in genes
Researchers studying the root cause of cystic fibrosis have made a major advance in our understanding of silent gene changes with implications for the complexity of cystic fibrosis.
New imaging technique shows effectiveness of cystic fibrosis drug
Cystic fibrosis currently has no cure, though a drug approved by the Food and Drug Administration treats the underlying cause of the disease.
New study resolves the structure of the human protein that causes cystic fibrosis
In order to better understand how genetic mutations give rise to cystic fibrosis, researchers need to map the protein responsible for the disorder.
New molecules identified that could help in the fight to prevent cystic fibrosis
New research has identified new molecules that could help in the fight to prevent diseases caused by faulty ion channels, such as cystic fibrosis.
Newborn screening for cystic fibrosis
A new study led by a team from the Research Institute of the McGill University Health Centre and Cystic Fibrosis Canada reinforces the benefits of newborn screening for cystic fibrosis (CF) patients.
Evolving insights into cystic fibrosis lung infections
Recent research progress into how bacteria adapt and evolve during chronic lung infections in cystic fibrosis patients could lead to better treatment strategies being developed, according to a new review by the University of Liverpool.
Key hurdle overcome in the development of a drug against cystic fibrosis
In people suffering from cystic fibrosis the CFTR protein is not located in the right place in mucus-producing cells: it remains inside the cell while it should be in the cell wall.
Researchers further illuminate pathway for treatment of cystic fibrosis
By studying alveolar macrophages, which provide our airways with a crucial defense against pathogens, UNC scientists are now able to more fully understand the larger picture of CF symptoms and continue progress towards targeted treatments, aside from addressing the mutated CFTR gene.
Gene therapy: A promising candidate for cystic fibrosis treatment
An improved gene therapy treatment can cure mice with cystic fibrosis (CF).

Related Cystic Fibrosis Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".