Nav: Home

CNIC scientists identify a promising target for the treatment of heart failure

March 28, 2018

Researchers at the Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) led by Dr. José Antonio Enríquez have described a new therapeutic target for the prevention of heart failure, one of the leading causes of death and disability in the world. The new target, a mitochondrial protease called OMA1, is activated when the heart is under stress. Inhibition of OMA1 protects cardiomyocytes (the muscle cells of the heart), preventing their death and stemming the deterioration in heart function. The study is published today in Science Translational Medicine. Cardiovascular diseases constitute the main cause of death in industrialized societies. One of the most serious cardiovascular diseases is heart failure, which is the third leading cause of death in Spain. Heart failure is the inability of the heart to adequately meet the energy demands of the body. Current treatment guidelines recommend changes in lifestyle, dietary restrictions, and various medical treatments. Unfortunately, the success of these approaches is limited and varies from patient to patient. Because of this, a major economic and scientific effort is directed at identifying the cause of heart failure and ways to prevent it. Correct heart function requires a sufficient contractile capacity and a constant and controlled production of energy to supply all tissues with the oxygen they need. Mitochondria are subcellular organelles that coordinate both energy production and the availability of calcium for contraction. Mitochondria are also the main producer in the cell of reactive oxygen species (ROS), which are toxic when produced in large quantities. To ensure the correct function of the muscle cells in the heart, mitochondria need to maintain a defined internal structure and be able to prevent excessive ROS production during intensive contraction brought on by a high workload, hypertension, or other stress situations.

In the study, the research team led by Dr. Enríquez evaluated 3 independent models of heart failure that present distinct symptoms: chronic tachycardia, chronic hypertension, and myocardial ischemia with cardiac hypertrophy. Regardless of the source, stress induced heart injury in all 3 models. First author Dr. Rebeca Acín Pérez explained: "Independently of the initial cause of heart failure, the 3 models undergo key changes related to mitochondria." These changes consist of an increase in mitochondrial ROS production followed by changes in the morphology of the inner mitochondrial membrane and a loss of energy-generating capacity, leading to cardiomyocyte death.

The research team found that the changes in mitochondrial inner membrane morphology require the activation of the protease OMA1. Acín Pérez explained that "there is just one OMA1 substrate described to date, OPA1, a mitochondrial protein responsible for maintaining the characteristic folds, or cristae, in the inner membrane." In the study, the elimination of OMA1 prevented heart failure in all 3 models studied, demonstrating a direct role in the protection of cardiomyocytes. The new results identify OMA1 as a promising target for the treatment of heart failure.
-end-
About the CNIC

The Centro Nacional de Investigaciones Cardiovasculares (CNIC), directed by Dr. Valentín Fuster, is dedicated to cardiovascular research and the translation of knowledge gained into real benefits for patients. The CNIC, recognized by the Spanish government as a Severo Ochoa center of excellence, is financed through a pioneering public-private partnership between the government (through the Carlos III Institute of Health) and the Pro CNIC Foundation, which brings together 14 of the most important Spanish private companies.

Centro Nacional de Investigaciones Cardiovasculares

Related Heart Failure Articles:

Type 2 diabetes may affect heart structure and increase complications and death among heart failure patients of Asian ethnicity
The combination of heart failure and Type 2 diabetes can lead to structural changes in the heart, poorer quality of life and increased risk of death, according to a multi-country study in Asia.
Preventive drug therapy may increase right-sided heart failure risk in patients who receive heart devices
Patients treated preemptively with drugs to reduce the risk of right-sided heart failure after heart device implantation may experience the opposite effect and develop heart failure and post-operative bleeding more often than patients not receiving the drugs.
How the enzyme lipoxygenase drives heart failure after heart attacks
Heart failure after a heart attack is a global epidemic leading to heart failure pathology.
Novel heart pump shows superior outcomes in advanced heart failure
Severely ill patients with advanced heart failure who received a novel heart pump -- the HeartMate 3 left ventricular assist device (LVAD) -- suffered significantly fewer strokes, pump-related blood clots and bleeding episodes after two years, compared with similar patients who received an older, more established pump, according to research presented at the American College of Cardiology's 68th Annual Scientific Session.
NSAID impairs immune response in heart failure, worsens heart and kidney damage
Non-steroidal anti-inflammatory drugs, or NSAIDs, are widely known as pain-killers and can relieve pain and inflammation.
More Heart Failure News and Heart Failure Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...