Nav: Home

New mathematical model could be key to designing effective therapies for brain disorders

March 28, 2019

The G-protein-coupled receptors are present in many neurological and psychological disorders thanks to the activation of G proteins. In addition to activating the G protein, they are also able to activate proteins responsible for other signalling routes, thereby achieving more than one effect at a time. These effects can be either beneficial or detrimental and for this reason controlling them by biasing the signal into the adequate direction is a therapeutic objective. One example of this type of therapy is chronic pain and therapy with opioid drugs. Morphine releases its therapeutic effects by binding to the μ-opioid receptor and activating the signalling route of the G-proteins, but also through the same receptor it produces the adverse effects through the β-arrestin route. A current research line found in pharmaceutical laboratories is the design of drugs which bind to the μ-opioid receptor specifically to activate the G-protein route.

The innovation in the design of new drugs must go hand in hand with the development of new theoretical frameworks which permit defining reliable measures for the pharmaceutical properties needing improvement. In the study, researchers delved deeper into the quantification of the bias of the biological signal through the inclusion of the receptors' activity when not bound (constitutive activity or basal activity of the receptor). Thus, there is an increase in the pharmacological space accessible to the discovery and quantification of new drugs that are agonist, neutral antagonist and inverse antagonist (ligands which increase, do not alter or diminish the basal activities of receptors).

"Taking into account that for a specific receptor a signalling route could be linked to the therapeutic effects while another one can have adverse effects, the quantification of a biased signalling route of the receptors is fundamental for the design of more precise drugs with less side effects", says Dr Jesús Giraldo, coordinator of the study and head of the Laboratory of Molecular Neuropharmacology and Bioinformatics of the UAB Institute of Neuroscience (INc). Dr Giraldo adds that "the next step will be to incorporate the model into the routine and systematic analysis of new drugs to verify its degree of validity in real situations".
-end-


Universitat Autonoma de Barcelona

Related Drugs Articles:

Using drugs for different diseases than initially intended for
Thousands of drugs have the potential to be effective against other diseases than they were developed for.
Virtual development of real drugs
systemsDock is a new, free on-line resource that makes screening for drugs faster and more accurate.
Migraine drugs underused
New research shows that more migraines could be safely treated with drugs that are known to constrict blood vessels.
Why cancer drugs can't take the pressure
A major reason why cancer drugs fail is that they cannot penetrate the high-pressure environment of solid tumors.
Designing better drugs
A new strategy for engineering protein fusions -- to make specific cell-targeted drugs without side effects -- could enable a safer, more potent class of protein drugs.
Why synthetic drugs are as scary as you think (video)
Synthetic drugs such as 'bath salts,' 'K2' or 'Spice' have made unsettling headlines lately, with reports of violent, erratic behavior and deaths after people have used the substances.
Using old drugs to treat new viruses
A group of drugs already in everyday use to treat psychosis or depression may also be used to defeat deadly and emerging viruses, according to new research led by the University of Leeds.
'Metal' drugs to fight cancer
What is the mechanism of action of metal-based chemotherapy drugs (the most widely used for treating common cancers like testicular or ovarian cancer)?
Using superlatives in the media for cancer drugs
The use of superlatives to describe cancer drugs in news articles as 'breakthrough,' 'revolutionary,' 'miracle' or in other grandiose terms was common even when drugs were not yet approved, had no clinical data or not yet shown overall survival benefits, according to an article published online by JAMA Oncology.
Seeking a better way to design drugs
With a three-year, $346,000 award from the National Institutes of Health, a research team at Worcester Polytechnic Institute.

Related Drugs Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".