Nav: Home

Record efficiency for perovskite-based light-emitting diodes

March 28, 2019

Efficient near-infrared (NIR) light-emitting diodes of perovskite have been produced in a laboratory at Linköping University. The external quantum efficiency is 21.6%, which is a record. The results have been published in Nature Photonics.

The work is led by LiU scientist Feng Gao, in close collaboration with colleagues in China, Italy, Singapore and Switzerland.

Perovskites are a group of materials defined by their crystal structure, and have been the focus of intense research interest during the past 10 years, initially for solar cells and recently also for light emitting diodes. They have good light-emitting properties and are easy to manufacture. The external quantum efficiency (the ratio of charge carriers emitted as light over all of those fed into the materials) of light-emitting diodes based on perovskites has until now been limited by defects that arise in the material during manufacture. The defects act as traps for the charge carriers and thus cause energy losses.

One way of dealing with defects is to add materials known as "passiviation molecules", which bind to the atoms that cause defects. The researchers had previously discovered a molecule with amino groups at its ends that gave a certain improvement in properties. However, when they selected a molecule that also contained oxygen atoms, the effect increased dramatically.

"We now understand that it is the hydrogen bonds between passivation molecules and perovskite materials that cause problems. This allowed us to search for a molecule that was perfect for passivation", says Feng Gao, senior lecturer in the Division of Biomolecular and Organic Electronics at Linköping University.

The molecule they found has two amino groups at its ends, with oxygen atoms at suitable distances between them. Oxygen atoms reduce the hydrogen bonding ability of amino groups, and hence increase the probability that they interact with defects. The number of traps for charge carriers in the perovskite is significantly reduced, allowing the charge carriers to recombine and emit light efficiently.

"This particular perovskite material gives highly efficient light-emitting diodes in the near-infrared region. Near-infrared light-emitting diodes are particularly useful for medical and telecommunication applications. We believe that our new findings can also be applied to perovskite light-emitting diodes with other colours", says Feng Gao.

The external quantum efficiency is a record-high 21.6%.

"We have developed the best light-emitting diodes in perovskite material yet. They can also compete with light-emitting diodes based on, for example, organic materials", says Wiedong Xu, postdoc in the Division of Biomolecular and Organic Electronics, LiU.
-end-
One source of finance for the research has been Feng Gao's ERC Starting Grant. Feng Gao is also Wallenberg Academic Fellow, and Wiedong Xu is a Wenner-Gren Postdoc Fellow.

Rational molecular passivation for high-performance perovskite light-emitting diodes

Weidong Xu, Qi Hu, Sai Bai, Chunxiong Bao, Yanfeng Miao, Zhongcheng Yuan, Tetiana Borzda, Alex J. Barker, Elizaveta Tyukalova, Zhangjun Hu, Maciej Kawecki, Heyong Wang, Zhibo Yan, Xianjie Liu, Xiaobo Shi, Kajsa Uvdal, Mats Fahlman, Wenjing Zhang, Martial Duchamp, Jun-Ming Liu, Annamaria Petrozza, Jianpu Wang, Li-Min Liu, Wei Huang, and Feng Gao. Nature Photonics 2019. doi 10.1038/s41566-019-0390-x

Contact: Feng Gao, feng.gao@liu.se, +46 13 28 68 82

Linköping University

Related Atoms Articles:

Ordering of atoms in liquid gallium under pressure
Liquid metals and alloys have exceptional properties that make them suitable for electrical energy storage and generation applications.
Exciting apparatus helps atoms see the light
Researchers in the Light-Matter Interactions for Quantum Technologies Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) have generated Rydberg atoms - unusually large excited atoms - near nanometer-thin optical fibers.
Manipulating atoms to make better superconductors
A new study by University of Illinois at Chicago researchers published in the journal Nature Communications shows that it is possible to manipulate individual atoms so that they begin working in a collective pattern that has the potential to become superconducting at higher temperatures.
Grabbing atoms
In a first for quantum physics, University of Otago researchers have 'held' individual atoms in place and observed previously unseen complex atomic interactions.
Chemists allow boron atoms to migrate
Organic molecules with atoms of the semi-metal boron are important building blocks for synthesis products to produce drugs and agricultural chemicals.
2D materials: arrangement of atoms measured in silicene
Silicene consists of a single layer of silicon atoms. In contrast to the ultra-flat material graphene, which is made of carbon, silicene shows surface irregularities that influence its electronic properties.
Atoms don't like jumping rope
Nanooptical traps are a promising building block for quantum technologies.
2000 atoms in two places at once
The quantum superposition principle has been tested on a scale as never before in a new study by scientists at the University of Vienna.
Single atoms as catalysts
Only the outermost layer of a catalyst can play a role in chemical reactions.
How do atoms vibrate in graphene nanostructures?
Researchers from the University of Vienna, the Advanced Institute of Science and Technology in Japan, the company JEOL and La Sapienza University in Rome have developed a method capable to measure all phonons existing in a nanostructured material.
More Atoms News and Atoms Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.