Nav: Home

Ferromagnetic nanoparticle systems show promise for ultrahigh-speed spintronics

March 28, 2019

WASHINGTON, D.C., March 28, 2019 -- In the future, ultrahigh-speed spintronics will require ultrafast coherent magnetization reversal within a picosecond -- one-trillionth of a second. Spintronics centers on an electron's spin and magnetic moment in solid-state devices. While this may eventually be achieved via irradiation with a nearly monocyclic terahertz pulse, the small change of magnetization, or modulation, it generates has so far prevented any practical application of this technique.

Generally, the "magnetic field" component of a terahertz pulse is considered to be the origin of the coherent terahertz response of the magnetization. But, as a group of University of Tokyo researchers previously discovered, the "electric field" component of a terahertz pulse plays a key role in the terahertz magnetization modulation of semiconductor-based ferromagnetic materials.

Now the group reports in the journal Applied Physics Letters, from AIP Publishing, that their initial discovery inspired them to explore ferromagnetic nanoparticles embedded within a semiconductor. Their theory was that the electric field of the terahertz pulse could be effectively applied to each nanoparticle due to the small energy loss of the terahertz pulse during its propagation through a semiconductor.

"Until now, ferromagnetic metal films have been used for studies on the terahertz modulation of the magnetization," said Shinobu Ohya, an associate professor at the University of Tokyo. "The modulation ratio reported so far has typically been less than ~1 percent of the saturation magnetization."

To test their theory, the group used a 100-nanometer-thick semiconductor gallium arsenide (GaAs) film embedded with ferromagnetic manganese arsenide (MnAs) nanoparticles. "The small energy loss of the terahertz pulse during the propagation in our film allows it to penetrate the film. This means that the strong terahertz electric field -- with a maximum intensity of 200 kilovolts/centimeter -- is uniformly applied to all of the ferromagnetic nanoparticles," said Ohya. "This strong electric field induces the large magnetization modulation via the modulation of the carrier density in the MnAs nanoparticles, thanks to the spin-orbit interaction."

The researchers succeeded in obtaining a large modulation of up to 20 percent of the saturation magnetization, and also concluded that the electric field component of the terahertz pulse plays a key role in the large modulation.

"Our results will lead to an ultrafast coherent magnetization reversal within a picosecond, which will be an essential technique for ultrahigh-speed spintronics," Ohya said. "Ferromagnetic nanoparticle systems are extremely promising for high-speed magnetization switching using terahertz pulses."
The article, "Large terahertz magnetization response in ferromagnetic nanoparticles," is authored by Tomoaki Ishil, Hiromichi Yamakawa, Toshiki Kanaki, Tatsuya Miyamoto, Noriaki Kida, Hiroshi Okamotoa, Masaaki Tanaka and Shinobu Ohya. It was published in Applied Physics Letters on Feb. 12, 2019 (DOI: 10.1063/1.5088227). The article can be accessed at


Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See

American Institute of Physics

Related Nanoparticles Articles:

Chemists perform surgery on nanoparticles
A team of chemists led by Carnegie Mellon's Rongchao Jin has for the first time conducted site-specific surgery on a nanoparticle.
Nanoparticles remain unpredictable
The way that nanoparticles behave in the environment is extremely complex.
Gold standards for nanoparticles
KAUST researchers reveal how small organic 'citrate' ions can stabilize gold nanoparticles, assisting research on the structures' potential.
Lipid nanoparticles for gene therapy
Twenty-five years have passed since the publication of the first work on solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as a system for delivering drugs.
Nanoparticles hitchhiking their way along strands of hair
In shampoo ads, hair always looks like a shiny, smooth surface.
Better contrast agents based on nanoparticles
Scientists at the University of Basel have developed nanoparticles which can serve as efficient contrast agents for magnetic resonance imaging.
Gentle cancer treatment using nanoparticles works
Cancer treatments based on laser irridation of tiny nanoparticles that are injected directly into the cancer tumor are working and can destroy the cancer from within.
Radiation-guided nanoparticles zero in on metastatic cancer
Zap a tumor with radiation to trigger expression of a molecule, then attack that molecule with a drug-loaded nanoparticle.
Nanoparticles can grow in cubic shape
Use of nanoparticles in many applications, e.g. for catalysis, relies on the surface area of the particles.
Nanoparticles deliver anticancer cluster bombs
Scientists have devised a triple-stage 'cluster bomb' system for delivering the chemotherapy drug cisplatin, via tiny nanoparticles designed to break up when they reach a tumor.

Related Nanoparticles Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...