Nav: Home

A compass pointing west

March 28, 2019

Magnets are characterized by the fact that they have a North pole and a South pole. If two common magnets are held close to each other, opposite poles attract and like poles repel each other. This is why magnetic needles, such as those found in a compass, align themselves in the Earth's magnetic field so that we can use them to determine the cardinal directions North and South and, derived from this, East and West. In the world that we experience every day with our senses, this rule is correct. However, if you leave the macroscopic world and dive into depths of much smaller dimensions, this changes. Researchers at the Paul Scherrer Institute PSI and the ETH Zurich have now discovered a very special magnetic interaction at the level of nanoscopic structures made of magnetic layers only a few atoms thick.

The atoms act like tiny compass needles and unfold their effect over tiny distances in the nanometre range, meaning a few millionths of a millimeter. That is why researchers also call them nanomagnets.

The phenomenon that researchers at PSI have now been able to observe is based on an interaction that the two physicists Igor Dzyaloshinskii and Toru Mariya predicted more than 60 years ago. "That was our starting point", says Zhaochu Luo, physicist at PSI and ETH Zurich.

North-West and South-East coupling of atoms

In this interaction, the atomic compass needles do not only align in a North-South direction, but also in an East-West direction. "Where they point depends on how the atoms in their neighbourhood orient themselves", says Zhaochu Luo, first author of the study. For example, if a group of atoms points North, the neighbouring group always points West. And if a group of atoms points South, then the neighbouring atoms orient themselves to the East.

These orientations can be reversed by magnetic fields or electric currents, that is from North to South and vice versa. The neighbouring atomic groups then reorient themselves accordingly, either from West to East or vice versa.

The researchers discovered the coupling of North-West and South-East orientation with the help of a layer of cobalt atoms only 1.6 nanometres thick, which was sandwiched between a platinum layer on one side and an aluminium oxide layer on the other. "The development of these special layers for our experiments alone took about half a year", says Zhaochu Luo. He works in the Mesoscopic Systems research group at PSI lead by Laura Heyderman, who is also professor at ETH Zurich.

What is unusual is that this interaction takes place laterally, that is in one plane. Previously, comparable couplings between nanomagnets could only be detected vertically, with groups of atoms arranged one above the other.

The phenomenon observed jointly by PSI and ETH Zurich researchers enables the development of planar magnetic networks. Among other things, synthetic antiferromagnets can be produced. In these antiferromagnets, atomic groups point either North or South at regular intervals. The number of opposing nanomagnets is approximately the same, so that they neutralize each other in sum. This is why, at first glance, antiferromagnets do not act like magnets - for example, they do not stick to a fridge door.

The neighbouring atoms, which are oriented either to the West or to the East, act as spacers separating the magnets pointing North or South, each of which is as small as a few nanometres. This makes it possible, for example, to build new, more efficient computer memories and switches, which in turn makes microprocessors more powerful.

Logical gates for computers

The individual nanomagnets, which face either North or South, are suitable for constructing logic gates. A logic gate is a building block in a computer and functions as a kind of switch. Signals enter these gates and are then processed into an output signal. In a computer, many of these gates are networked to perform operations. Such a gate can also be constructed with the help of nanomagnets aligned to the North or South. These are analogous to processors commonly used today with transistors processing signals in binary form, which interpret all signals as zero or one. Nanomagnets that are oriented either North or South can also do this. This could make microprocessors more compact and efficient.

According to Pietro Gambardella, who supervised this study with Laura Heyderman, "this work provides a platform to design arrays of linked nanomagnets and achieve all-electric control of planar logic gates and storage devices", the scientists now write in Science.
-end-
The researchers achieved their results in the laboratory and at the Swiss Light Source SLS at PSI.

Text: Paul Scherrer Institute/Sebastian Jutzi

Images are available to download at http://psi.ch/hUFy.

About PSI

The Paul Scherrer Institute PSI develops, builds and operates large, complex research facilities and makes them available to the national and international research community. The institute's own key research priorities are in the fields of matter and materials, energy and environment and human health. PSI is committed to the training of future generations. Therefore about one quarter of our staff are post-docs, post-graduates or apprentices. Altogether PSI employs 2100 people, thus being the largest research institute in Switzerland. The annual budget amounts to approximately CHF 390 million. PSI is part of the ETH Domain, with the other members being the two Swiss Federal Institutes of Technology, ETH Zurich and EPFL Lausanne, as well as Eawag (Swiss Federal Institute of Aquatic Science and Technology), Empa (Swiss Federal Laboratories for Materials Science and Technology) and WSL (Swiss Federal Institute for Forest, Snow and Landscape Research).

Contact

Dr. Luo Zhaochu
Mesoscopic Systems Group
Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
Telephone: +41 56 310 54 94, e-mail: zhaochu.luo@psi.ch [English, Chinese]

Prof. Dr. Laura Heyderman
Mesoscopic Systems Group
Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
Telephone:+41 56 310 26 13, e-mail: laura.heyderman@psi.ch [English, German, French]

Prof. Dr. Pietro Gambardella
Magnetism and Interface Physics
ETH Zurich, Hönggerbergring 64, 8093 Zurich, Switzerland
Telephone: +41 44 633 07 56, e-mail: pietro.gambardella@mat.ethz.ch [English, German, French, Spanish, Italian]

Original Publication

Chirally coupled nanomagnets
Z. Luo, T. Phuong Dao, A. Hrabec, J. Vijayakumar, A. Kleibert, M. Baumgartner, E. Kirk, J. Cui, T. Savchenko, G. Krishnaswamy, L. J. Heyderman, and P. Gambardella
Science 29 March 2019
DOI: 10.1126/science.aau7913

Paul Scherrer Institute

Related Magnets Articles:

Anisotropy of spin-lattice relaxations in molecular magnets
Scientists from IFJ PAN in cooperation with researchers from the Nara Women's University (Japan) and the Jagiellonian University (Poland) took another important step towards building a functional quantum computer.
Permanent magnets stronger than those on refrigerator could be a solution for delivering fusion energy
Permanent magnets can, in principle, greatly simplify the design and production of the complex coils of stellarator fusion facilities.
Super magnets from a 3D printer
Magnetic materials are an important component of mechatronic devices such as wind power stations, electric motors, sensors and magnetic switch systems.
Cooling magnets with sound
Today, most quantum experiments are carried out with the help of light, including those in nanomechanics, where tiny objects are cooled with electromagnetic waves to such an extent that they reveal quantum properties.
Obtaining and observing single-molecule magnets on the silica surface
Following the latest research in the field of obtaining single-molecule magnets (SMMs), scientists have taken another step on the way toward obtaining super-dense magnetic memories and molecular neural networks, in particular the construction of auto-associative memories and multi-criterion optimization systems operating as the model of the human brain.
Cloud data speeds set to soar with aid of laser mini-magnets
Tiny, laser-activated magnets could enable cloud computing systems to process data up to 100 times faster than current technologies, a study suggests.
Sustainable 3D-printed super magnets
Magnetic materials play important roles in electrical products. These materials are usually manufactured by means of established production techniques and use of rare earth metals.
Politically extreme counties may act as magnets, migration patterns suggest
In a study of county-to-county migration patterns in the US, researchers found that when people migrate, they tend to move to other counties that reflect their political preferences.
Self-assembling system uses magnets to mimic specific binding in DNA
A team led by Cornell University physics professors Itai Cohen and Paul McEuen is using the binding power of magnets to design self-assembling systems that potentially can be created in nanoscale form.
Magnets for the second dimension
ETH Zurich scientists have developed cube-shaped magnetic building blocks that can be assembled into two-dimensional shapes and controlled by an external magnetic field.
More Magnets News and Magnets Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.