Nav: Home

Copycat fungus deceives immune system and deactivates body's response to infection

March 28, 2019

Fungus can imitate signals from our immune system and prevent our body from responding to infection, new research from the University of Sheffield has found.

Life-threatening fungal infection is a major killer of people with immune system problems such as blood cancers, HIV infection or following organ transplant.

The new study focused on one of the most dangerous infections for people with HIV/AIDS - Cryptococcus neoformans - which causes hundreds of thousands of deaths worldwide every year.

Fungi are known to make molecules similar to those of our own immune system, but why fungi make these molecules and what their function is has been a longstanding mystery.

Now, scientists from the University of Sheffield have identified how specific immune signals called prostaglandins, made by fungi, are able to disarm immune cells.

The team, led by Dr Simon Johnston from the University's Department of Infection, Immunity and Cardiovascular Disease, found that fungi which are not able to make these signals were less able to grow during infection.

Dr Johnston, Senior Research Fellow in Infectious Disease, said: "We've discovered that these immune signals - fungal prostaglandins - deactivate immune cells, preventing them from destroying the infection.

"We found the fungus was activating a normal immune pathway that prevents overstimulation of the immune system, but is essential in stopping infections.

"Opportunistic infections like Cryptococcus - which normally pose no threat, but are potentially life-threatening in those with weakened immune systems - are an increasing problem and are often very difficult to treat.

"Understanding how opportunistic infections cause disease is vital in order to develop new and more effective treatments, especially with the increase in antibiotic resistant infections."

Dr Johnston added: "We are now working to find other ways these fungal molecules are affecting immune cells and how the immune cells are deactivated.

"The same deactivation of immune cells is seen in other diseases such as cancer. Our findings mean that we now have a new approach to solving this problem and will help the development of new treatments."

The study, published today (28 March 2019) in the journal PLoS Pathogens (DOI : http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1007597) was funded by the Medical Research Council (MRC) and British Infection Association.

Dr Anna Kinsey, programme manager for viral and fungal infections at the MRC, said: "The MRC's investment in fungal research, and in future leaders in this field, is important.

"Current anti-fungal therapies are poorly tolerated and toxic and, significantly, resistance to these agents is increasing. As such, there is an urgent need for new treatments, which first requires a better understanding of the interaction of the fungal pathogen with the body's immune system.

This research provides a window into how C. neoformans manipulates the immune system to promote its own growth and increase infection."
-end-
The University of Sheffield's Department of Infection, Immunity and Cardiovascular Disease is a world-leading centre pioneering discoveries which help to fight disease and inform inspirational teaching.

For more information please visit: https://www.sheffield.ac.uk/iicd/index

For further information please contact: Amy Huxtable, Media Relations Officer, University of Sheffield, 0114 222 9859, a.l.huxtable@sheffield.ac.uk

Notes to editors

The University of Sheffield

With almost 29,000 of the brightest students from over 140 countries, learning alongside over 1,200 of the best academics from across the globe, the University of Sheffield is one of the world's leading universities.

A member of the UK's prestigious Russell Group of leading research-led institutions, Sheffield offers world-class teaching and research excellence across a wide range of disciplines.

Unified by the power of discovery and understanding, staff and students at the university are committed to finding new ways to transform the world we live in.

Sheffield is the only university to feature in The Sunday Times 100 Best Not-For-Profit Organisations to Work For 2018 and for the last eight years has been ranked in the top five UK universities for Student Satisfaction by Times Higher Education.

Sheffield has six Nobel Prize winners among former staff and students and its alumni go on to hold positions of great responsibility and influence all over the world, making significant contributions in their chosen fields.

Global research partners and clients include Boeing, Rolls-Royce, Unilever, AstraZeneca, Glaxo SmithKline, Siemens and Airbus, as well as many UK and overseas government agencies and charitable foundations.

The Medical Research Council (MRC)

The Medical Research Council is at the forefront of scientific discovery to improve human health. Founded in 1913 to tackle tuberculosis, the MRC now invests taxpayers' money in some of the best medical research in the world across every area of health. Thirty-three MRC-funded researchers have won Nobel prizes in a wide range of disciplines, and MRC scientists have been behind such diverse discoveries as vitamins, the structure of DNA and the link between smoking and cancer, as well as achievements such as pioneering the use of randomised controlled trials, the invention of MRI scanning, and the development of a group of antibodies used in the making of some of the most successful drugs ever developed. Today, MRC-funded scientists tackle some of the greatest health problems facing humanity in the 21st century, from the rising tide of chronic diseases associated with ageing to the threats posed by rapidly mutating micro-organisms. The Medical Research Council is part of UK Research and Innovation. https://mrc.ukri.org/

University of Sheffield

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.