Nav: Home

Speedier stomata in optogenetically enhanced plants improve growth and conserve water

March 28, 2019

By introducing an extra ion channel into the stomata of mustard plants, researchers have developed a new a way to speed up the stomatal response in their leaves. The speedier stomata of the optogenetically enhanced plants improved their photosynthetic efficiency and water use - producing more than twice the amount of biomass expected in the fluctuating light typical of outdoor growing conditions. Stomata are the tiny pores that cover the surface of a plant's leaves, allowing for the uptake of CO2 for photosynthesis and for the transpiration of water, by opening and closing in response to environmental conditions. However, these dual roles are often conflicting. While open stomata may allow a plant to assimilate large amounts of carbon for photosynthesis, this happens at the cost of increased water loss. What's more, stomata respond slowly to changing conditions. In environments where natural light fluctuates - due to passing clouds, for example - stomata could stay open or closed for longer than they need to. As a result, photosynthesis is generally not as efficient as it could be and too much water is lost from the plant. The ability to circumvent the carbon:water trade-off provides a promising avenue to improve crop productivity. To address this challenge, Maria Papanatsiou and colleagues used the optogenetic tool BLINK1 (Blue Light-Induced K+ channel 1) to engineer an extra ion channel into the stomata of the mustard plant Arabidopsis. According to Papanatsiou et al., the channel, which is triggered by exposure to blue light, causes the stomata to open or close more rapidly. According to the results, the increased speed improved the plant's water use efficiency without a penalty to CO2 uptake.
-end-


American Association for the Advancement of Science

Related Photosynthesis Articles:

Strange bacteria hint at ancient origin of photosynthesis
Structures inside rare bacteria are similar to those that power photosynthesis in plants today, suggesting the process is older than assumed.
Just how much does enhancing photosynthesis improve crop yield?
In the next two decades, crop yields need to increase dramatically to feed the growing global population.
Algal library lends insights into genes for photosynthesis
To identify genes involved in photosynthesis, researchers built a library containing thousands of single-celled algae, each with a different gene mutation.
New molecular blueprint advances our understanding of photosynthesis
Researchers at Lawrence Berkeley National Laboratory have used one of the most advanced microscopes in the world to reveal the structure of a large protein complex crucial to photosynthesis, the process by which plants convert sunlight into cellular energy.
How bacteria build hyper-efficient photosynthesis machines
Researchers facing a future with a larger population and more uncertain climate are looking for ways to improve crop yields, and they're looking to photosynthetic bacteria for engineering solutions.
More Photosynthesis News and Photosynthesis Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...