Nav: Home

Designer organelles bring new functionalities into cells

March 28, 2019

For the first time, scientists have engineered the complex biological process of translation into a designer organelle in a living mammalian cell. Research by the Lemke group at the European Molecular Biology Laboratory (EMBL) - in collaboration with JGU Mainz and IMB Mainz - used this technique to create a membraneless organelle that can build proteins from natural and synthetic amino acids carrying new functionality. Their results - published in Science on 29 March - allow scientist to study, tailor, and control cellular function in more detail.

During evolution, the development of new organelles allows cells and organisms to become more complex, due to the ability to sort cellular processes into specific hotspots. "Our tool can be used to engineer translation, but potentially also other cellular processes like transcription and post-translational modifications. This might even allow us to engineer new types of organelles that extend the functional repertoire of natural complex living systems," explains Christopher Reinkemeier, PhD student at EMBL and JGU Mainz and co-first author of the paper. "We could for example incorporate fluorescent building blocks that allow a glimpse inside the cell using imaging methods."

"The organelle can make proteins by using synthetic non-canonical amino acids. Currently we know of more than 300 different non-canonical amino acids - compared to 20 which are naturally occurring. We are no longer restricted to the latter ones," says co-first author Gemma Estrada Girona. "The novelty we introduce is the ability to use these in a confined space, the organelle,, which minimises the effects on the host."

Wobbly wall-less organelles

Translation is such a complex process that it cannot be contained in one single organelle surrounded by a membrane. Therefore, inspiration was drawn from phase separation: the process responsible for the formation of membraneless organelles in vivo, such as nucleoli or stress granules. Phase separation is used by cells to locally concentrate specific proteins and RNAs. Even though these wall-less organelles have wobbly boundaries as they dynamically interact with the surrounding cytoplasm, they can still do very precise tasks. The team combines phase separation with cellular targeting to create their membraneless organelle and to make sure that only one organelle per cell is formed.

In the end, only five new components have to be engineered into a cell to build it. The assembly of these components generates a large structure, which might create some burden on the cell. In the future, the group aims to engineer minimal designer organelles, to minimise any impact on the physiology of the healthy organism.

Edward Lemke - visiting group Leader at EMBL, Professor at JGU Mainz and Adjunct Director at the IMB - led the project. He concludes: "In the end, we aim to develop a technique to engineer synthetic cellular organelles and proteins that do not affect the host machinery at all. We want to create a tool that does not have any uncharacterised effects. The organelle should be a simple add-on that allows organisms to do custom-designed novel things in a controlled fashion."
-end-


European Molecular Biology Laboratory

Related Proteins Articles:

Discovering, counting, cataloguing proteins
Scientists describe a well-defined mitochondrial proteome in baker's yeast.
Interrogating proteins
Scientists from the University of Bristol have designed a new protein structure, and are using it to understand how protein structures are stabilized.
Ancient proteins studied in detail
How did protein interactions arise and how have they developed?
What can we learn from dinosaur proteins?
Researchers recently confirmed it is possible to extract proteins from 80-million-year-old dinosaur bones.
Relocation of proteins with a new nanobody tool
Researchers at the Biozentrum of the University of Basel have developed a new method by which proteins can be transported to a new location in a cell.
More Proteins News and Proteins Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.