Nav: Home

Winds of change...Solar variability weakens the Walker cell

March 28, 2019

An international team of researchers from United Kingdom, Denmark, and Germany has found robust evidence for signatures of the 11-year sunspot cycle in the tropical Pacific. They analyzed historical time series of pressure, surface winds, and precipitation with specific focus on the Walker Circulation - a vast system of atmospheric flow in the tropical Pacific region that affects patterns of tropical rainfall. They have revealed that during periods of increased solar irradiance, the trade winds weaken and the Walker circulation shifts eastwards.

Stergios Misios, a postdoctoral researcher at the University of Oxford, said "We deal with a very short record of observations in the tropical Pacific and we must be very careful with how we filter out other interannual fluctuations. After a careful treatment of the data covering the last 60 years, we detected a robust slowdown of the Walker cell during years associated with solar-cycle maxima". The analysis shows that, in tandem with changes in the wind anomalies, the dominant patterns of tropical precipitation shift to the central Pacific during solar-cycle maxima. As a result, rainfall decreases over Indonesia and in the western Pacific, and increases over the central Pacific Ocean.

Simple mechanisms amplify the solar signal

The issue of solar influences on climate is long and controversial as there have been numerous claims which in most of the cases did not survive proper statistical scrutiny. But besides statistical verification lies an even more challenging problem: how miniscule changes in incoming solar radiation could produce significant climate signatures?

"Soon enough, we realized that the magnitude of the wind anomalies that we detected in observations simply could not be explained by radiative considerations alone. We thought that if it comes from the Sun, there must be another mechanism that amplifies the weakening of the Walker circulation." said Prof. Lesley Gray of University of Oxford. With the aid of a global climate model, this mechanism was found in the dynamical coupling between the atmosphere and ocean circulation in the tropical Pacific.

Averaged over the globe the surface temperature imprint of solar cycle barely reaches 0.1 K in a solar maximum - almost 8 times weaker than the global warming trends observed in the 20th century. Yet, even such a weak surface warming influences the Walker circulation through changes in global hydrology. As the surface warms, water vapor in the atmosphere increases at a higher rate than is lost by precipitation, necessitating a weakening of the Walker cell. This is a well-tested mechanism in model simulations of increased CO2 concentrations but it turns out that is operating under the 11-year solar cycle, too.

S. Misios, said "Our model showed westerly wind anomalies in the Pacific region even when we considered only changes in global hydrology, but the magnitude was far too weak. We hypothesized that atmosphere-ocean coupling, essentially the Bjerknes feedback, can amplify the solar signal". Using a climate model forced by the 11-year solar cycle alone, researchers found the evidence to support their hypothesis. Their model showed much stronger wind anomalies in the Pacific of magnitude as observed. They proposed that changes in global hydrology and the Bjerknes feedback mediate solar cycle influences on the Tropical Pacific. The researchers now hope that if the interplay between those mechanisms is properly represented by other climate models, it could give potential to improve the skill of decadal predictions in that region.
-end-


Aarhus University

Related Precipitation Articles:

Rainy season tends to begin earlier in Northern Central Asia
The researchers found robust increase of annual mean precipitation at the end of the 21st century under all modelling scenarios over northern central Asia.
Using cloud-precipitation relationship to estimate cloud water path of mature tropical cyclones
Scientists find the cloud water path of mature tropical cyclones can be estimated by a notable sigmoid function of near-surface rain rate.
Precipitation will be essential for plants to counteract global warming
A new Columbia Engineering study shows that increased water stress--higher frequency of drought due to higher temperatures, is going to constrain the phenological cycle: in effect, by shutting down photosynthesis, it will generate a lower carbon uptake at the end of the season, thus contributing to increased global warming.
Fall precipitation predicts abundance of curly top disease and guides weed management
Transmitted by an insect known as the beet leafhopper, curly top disease is a viral disease affecting many crops, including melons, peppers, sugar beets, and tomatoes.
Study confirms climate change impacted Hurricane Florence's precipitation and size
A new modeling framework showed that Hurricane Florence produced more extreme rainfall and was spatially larger due to human-induced climate change.
Study shows link between precipitation, climate zone and invasive cancer rates in the US
In a new study, researchers provide conclusive evidence of a statistical relationship between the incidence rates of invasive cancer in a given area in the US and the amount of precipitation and climate type (which combines the temperature and moisture level in an area).
Steep momentum gradients play a major role in coastal precipitation
Steep gradients of wind stress and potential temperature enable sustainable nearshore precipitation systems along the western coastal region of Korea.
Increasing precipitation extremes driving tree growth reductions across southwest
As the Earth's temperature warms, its hydrological cycle kicks into overdrive - wet years get wetter, and dry years get drier.
Extreme flooding from storm surge and heavy precipitation projected to increase higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change
Risk of compound flooding, which can result when rapid sea level rises associated with storms occur along with heavy rains, is currently concentrated along Mediterranean countries but will greatly increase for Northern European in the future as the climate warms, according to a new modeling study.
NASA reveals heavy rainfall in Tropical Cyclone Fani
Satellite data revealed heavy rainfall in powerful Tropical Cyclone Fani before it made landfall in northeastern India.
More Precipitation News and Precipitation Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

TED Radio Wow-er
School's out, but many kids–and their parents–are still stuck at home. Let's keep learning together. Special guest Guy Raz joins Manoush for an hour packed with TED science lessons for everyone.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.