Nav: Home

Winds of change...Solar variability weakens the Walker cell

March 28, 2019

An international team of researchers from United Kingdom, Denmark, and Germany has found robust evidence for signatures of the 11-year sunspot cycle in the tropical Pacific. They analyzed historical time series of pressure, surface winds, and precipitation with specific focus on the Walker Circulation - a vast system of atmospheric flow in the tropical Pacific region that affects patterns of tropical rainfall. They have revealed that during periods of increased solar irradiance, the trade winds weaken and the Walker circulation shifts eastwards.

Stergios Misios, a postdoctoral researcher at the University of Oxford, said "We deal with a very short record of observations in the tropical Pacific and we must be very careful with how we filter out other interannual fluctuations. After a careful treatment of the data covering the last 60 years, we detected a robust slowdown of the Walker cell during years associated with solar-cycle maxima". The analysis shows that, in tandem with changes in the wind anomalies, the dominant patterns of tropical precipitation shift to the central Pacific during solar-cycle maxima. As a result, rainfall decreases over Indonesia and in the western Pacific, and increases over the central Pacific Ocean.

Simple mechanisms amplify the solar signal

The issue of solar influences on climate is long and controversial as there have been numerous claims which in most of the cases did not survive proper statistical scrutiny. But besides statistical verification lies an even more challenging problem: how miniscule changes in incoming solar radiation could produce significant climate signatures?

"Soon enough, we realized that the magnitude of the wind anomalies that we detected in observations simply could not be explained by radiative considerations alone. We thought that if it comes from the Sun, there must be another mechanism that amplifies the weakening of the Walker circulation." said Prof. Lesley Gray of University of Oxford. With the aid of a global climate model, this mechanism was found in the dynamical coupling between the atmosphere and ocean circulation in the tropical Pacific.

Averaged over the globe the surface temperature imprint of solar cycle barely reaches 0.1 K in a solar maximum - almost 8 times weaker than the global warming trends observed in the 20th century. Yet, even such a weak surface warming influences the Walker circulation through changes in global hydrology. As the surface warms, water vapor in the atmosphere increases at a higher rate than is lost by precipitation, necessitating a weakening of the Walker cell. This is a well-tested mechanism in model simulations of increased CO2 concentrations but it turns out that is operating under the 11-year solar cycle, too.

S. Misios, said "Our model showed westerly wind anomalies in the Pacific region even when we considered only changes in global hydrology, but the magnitude was far too weak. We hypothesized that atmosphere-ocean coupling, essentially the Bjerknes feedback, can amplify the solar signal". Using a climate model forced by the 11-year solar cycle alone, researchers found the evidence to support their hypothesis. Their model showed much stronger wind anomalies in the Pacific of magnitude as observed. They proposed that changes in global hydrology and the Bjerknes feedback mediate solar cycle influences on the Tropical Pacific. The researchers now hope that if the interplay between those mechanisms is properly represented by other climate models, it could give potential to improve the skill of decadal predictions in that region.
-end-


Aarhus University

Related Precipitation Articles:

NASA observes Tropical Storm Dora dissipating rapidly
Two days of satellite imagery from the Global Precipitation Measurement mission or GPM core satellite showed that Dora, formerly a hurricane, went from generating moderate rainfall to barely any rainfall.
Forecasting strong precipitation -- the potential of potential deformation
A new parameter, called potential deformation (PD), is used in a simulated mesoscale convective system (MCS) to examine its performance in precipitation diagnosis.
Dartmouth-led study finds heavier precipitation in the northeast began in 1996
Over the past century, the Northeast has experienced an increase in the number of storms with extreme precipitation.
NASA sees powerful storms with advancing monsoon in Bay of Bengal
Storms associated with the advancing monsoon in the Northern Indian Ocean's Bay of Bengal were analyzed by NASA with the GPM or Global Precipitation Measurement mission core satellite.
Understanding changes in extreme precipitation
An ETH study explores why the increase in extreme precipitation is not the same across every region.
Lake water recharged by atmospheric precipitation in the Badain Jaran Desert
The water sources for the many of the lakes in the Badain Jaran Desert have been the focus of controversy in recent years.
Microphysical differences in precipitation between Tibet and southern China
Studies of raindrop size distribution (DSD) over different regions helps to advance our understanding of DSD characteristics and provide observational facts regarding the development and evaluation of microphysical parameterization schemes in numerical models over different regions in the future.
NASA sees vertical wind shear affecting Tropical Storm Muifa
Vertical wind shear can weaken a tropical cyclone and that's what's happening to the now weaker Tropical Depression Muifa in the Northwestern Pacific Ocean.
University of Montana researcher: Heavy precipitation speeds carbon exchange in tropics
New research by the University of Montana and its partner institutions gives insight into how forests globally will respond to long-term climate change.
Antarctic Mesoscale Prediction System precipitation products prove to be reliable
The Antarctic Mesoscale Prediction System (AMPS) is a key tool--specifically, for studying precipitation over the region.

Related Precipitation Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...