Nav: Home

New way of designing systems against correlated disruptions uses negative probability

March 28, 2019

In March of 2011, a powerful earthquake off the coast of Japan triggered the automatic shutdown of reactors at the Fukushima Daiichi Nuclear Power Plant and simultaneously disrupted electricity lines that supported their cooling. Had the earthquake been the only disaster that hit that day, emergency backup generators would have prevented a meltdown. Instead, a tsunami immediately followed the earthquake, flooding the generators and leading to the most serious nuclear accident in recent history. For systems expert Yanfeng Ouyang, a professor of civil and environmental engineering (CEE) at the University of Illinois, it was a perfect example of the problem of designing systems against correlated disruptions.

Until now, systems engineers have struggled with the problem of planning for disaster impacts that are linked by correlation - like those of earthquakes and tsunamis - because of the cumbersome calculations necessary to precisely quantify the probabilities of all possible combinations of disruption occurrences. When correlation exists, the probability of a joint disruption is not simply the product of those of individual disruptions. This leaves gaps in our understanding of how to design infrastructure systems with the greatest disaster resistance and resilience.

Now Ouyang and fellow CEE researchers have developed a new method for designing and optimizing systems subject to correlated disruptions. This method eliminates the need for directly addressing the many combinations of disruptions that have made such problems difficult to model in the past. They described it in a paper published this month in Transportation Research Part B, Methodological, the latest in a series of related papers from recent years. One of the keys of their method was incorporating negative probability, a concept seemingly never before utilized for system design purposes.

"With this concept, we developed a new methodology to help design systems with which we had difficulty before, such that they can be more resistant to disasters and more resilient than before," said Ouyang, the George Krambles Endowed Professor in Rail and Public Transit, who led the series of work with former doctoral students including Siyang Xie (Ph.D. 18), now a research scientist at Facebook, and former postdoctoral researcher Kun An, now a faculty member at Monash University in Australia.

The team's new computational method is widely applicable because it can be used to model and optimize any networked system - for example supply chains, transportation systems, communication networks, electrical grids and more. The method incorporates a virtual system of "supporting stations" to represent the correlated vulnerabilities of infrastructure components in the real world. This allows systems engineers to translate complex impacts of disasters on the components into simple and independent impacts on the supporting stations. For example, in the case of two warehouses whose operations may both be disrupted by a snowstorm, one imagines that their functionalities rely on some virtual power supply sources, each of which serves as a supporting station to the warehouses. By setting proper dependency between the two warehouses and these power sources, one can translate the correlated functionality states of the two warehouses into independent disruptions of the shared power supplies.

"We showed that any number of infrastructure components with any type of disruption correlation among them can be described by a properly set-up system of such virtual stations, where each of them fails only independently of each other," Ouyang said. This construct makes the calculations considerably more manageable because it significantly reduces the complexity of representing failure correlations in the design model.

"We now have a new way of describing the system," Ouyang said. "We go from a system where there is correlation into an equivalent system where there is no correlation - every failure is now independent of the others, so the probabilities are much easier to compute."

In order to accurately represent the behavior of systems in the real world, the team had to introduce the concept of negative probability for station disruptions, which allows their models to address negatively correlated disruption risks of system components. While positive correlation indicates that infrastructure components have dependencies driving their behaviors under disasters to move in the same direction, negative correlation, on the contrary, expresses the idea that the effects of disasters on one component implies the opposite effects on another. For example, when two warehouses compete for limited resources, one would gain benefit when its competitor is under loss or experiencing difficulty. Similarly, if an area near a river is flooded, other areas downstream might be better off because the water pressure was released.

Although negative correlation is a well-known concept, negative probability sounds somewhat unorthodox. At first the researchers were unaware that a similar concept was already in use in the discipline of quantum mechanics; they just knew from mathematics that they needed to represent the possibility of a disaster affecting competing entities in opposite ways. Because they had to translate correlation from the real-world system to the virtual structure of supporting stations, the likelihood of a supporting station to be affected by a disaster had to incorporate the risk of multiple components, some of which would be negatively affected and some of which might be positively affected. The "failure propensity," as they originally called such a negative probability in a 2015 paper, of a supporting station could therefore be larger than 1 - or equivalently, the complement being negative.

To the best knowledge of the researchers, using this concept for engineering applications is brand new, enabling them to solve problems that were previously prohibitively difficult. The team hopes engineering designers of all kinds of networked infrastructure systems will embrace it, leading to smarter engineering designs for greater disaster resistance across a broad spectrum of system types.

University of Illinois College of Engineering

Related Disaster Articles:

Researchers create tools to help volunteers do the most good after a disaster
In the wake of a disaster, many people want to help.
Early treatment for PTSD after a disaster has lasting effects
In 1988, a 6.9 magnitude earthquake struck near the northern Armenian city of Spitak.
GW study identifies need for disaster preparedness training for dermatologists
A new survey from dermatology and emergency medicine researchers at the George Washington University suggests that the dermatology community is inadequately prepared for a biological disaster and would benefit from a formal preparedness training program.
Volunteer tourism can aid disaster recovery
Volunteer tourism can help communities recover from natural disasters, as well as offer a unique and rewarding experience for volunteers, a new study reveals.
Birth rates in Fukushima City before, after nuclear disaster
An earthquake and subsequent tsunami led to the Fukushima Daiichi Nuclear Power Plant disaster in Japan in 2011.
New earthquake risk model could better inform disaster planning
Researchers have developed a new way to model seismic risk, which they hope will better inform disaster risk reduction planning in earthquake-prone areas.
Disaster relief: How can AI improve humanitarian assistance?
The unique topic of artificial intelligence (AI) for humanitarian assistance and disaster relief (HA/DR) was in the spotlight last week, as leading minds from academia, industry and the federal government met to discuss how modern technology can help victims of disasters around the globe.
Disaster recovery requires rebuilding livelihoods
The short-term losses people suffer when natural disasters strike can turn into long-term poverty if reconstruction policies don't consider how people are going to make a living.
PolyU endeavors in disaster management and disaster risk reduction
In the past decade after the devastated 5.12 Wenchuan Earthquake in Sichuan, academics and students from The Hong Kong Polytechnic University (PolyU) have been working on a series of inter-disciplinary projects to help enhance the resilience of the affected communities.
New theory rewrites opening moments of Chernobyl disaster
A brand-new theory of the opening moments during the Chernobyl disaster, the most severe nuclear accident in history, based on additional analysis is presented for the first time in the journal Nuclear Technology, an official journal of the American Nuclear Society.
More Disaster News and Disaster Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at