Nav: Home

Introducing a kinder, gentler way to blow holes in cells

March 28, 2019

When scientists attempt to slip big molecules, like the Cas9 enzyme that is key to CRISPR gene editing, into cells, things can get messy.

One popular technique, bulk electroporation, involves jolting cells with electricity. This blows holes everywhere in the cell, allowing anything and everything to get inside. Delicate cells, such as human T-cells, don't always survive the process.

Instead of sending in large proteins, scientists sometimes send in the DNA that codes for the protein, which is more compact. For this, viruses often work, but most viruses still suffer from safety concerns in humans. And adeno-associated viruses (AAV), which have been approved for clinical use by the Food and Drug Administration, are too small to carry large pieces of DNA.

A new technique developed by University of California, Berkeley, nanomaterials scientists overcomes these obstacles, using inexpensive lab equipment to efficiently infuse large macromolecules into cells. Called nanopore-electroporation, or nanoEP, the technique gently creates fewer than a dozen tiny holes in each cell that are sufficient to let molecules into the cell without traumatizing it. The pores heal rapidly afterward. In tests, more than 95 percent of the cells survived the procedure.

"It is a simpler, safer, more efficient and less expensive method to deliver macromolecules into the cell," said UC Berkeley postdoctoral fellow Yuhong Cao, lead author of a paper about the technique published online this week in the journal Proceedings of the National Academy of Sciences.

To create nanopores in a cell membrane, Cao adapted a standard lab item: an inexpensive commercial water filter with pores a mere 100 nanometers across -- far too small for a hair to fit through. They're used to filter large particles or molecules from liquids.

She grew cells on the water filter, then applied a very low voltage that created pores in the cell membrane only at the site of the pores in the filter. Typically, this produced about 10 pores per cell in a drop of liquid containing perhaps tens of thousands of cells.

The voltage also pulls macromolecules on the other side of the filter through the pores and into the cell.

"The technique allows effective delivery of various kinds of fluorescently-labeled functional proteins with about 80 percent efficiency," said Cao.

She was also able to genetically edit a a cell line of human T-cells called Jurkat cells by delivering the Cas9 protein and guide RNA, both large ribonucleoproteins, while maintaining a high survival rate for the T cells.

Tested so far only in immortalized cells, nanoEP should theoretically work with any type of cell, delivering macromolecules, such as Cas9, into an embryo, for example, or altering human T-cells for immunotherapy. And the delivery method does not require specialized equipment or buffer solutions. Cao's ultimate goal is to produce an inexpensive and easy-to-use clinical tool for delivering Cas9 safely and effectively for CAR (chimeric antigen receptor) T-cell immunotherapy against cancer.
-end-
The senior author of the paper is Peidong Yang, a UC Berkeley professor of chemistry and of materials science and engineering and a faculty scientist at Lawrence Berkeley National Laboratory. Yang is also director of the Kavli Energy NanoScience Institute (ENSI) at UC Berkeley.

Other authors include UC Berkeley's Enbo Ma, Stefano Cestellos-Blanco, Bei Zhang, Ruoyi Qiu, Yude Su and Jennifer Doudna, a professor of molecular and cell biology and of chemistry and a Howard Hughes Medical Institute investigator. The research is funded by the Keck Foundation (89208-31150-44-X-IQJED).

University of California - Berkeley

Related Immunotherapy Articles:

Immunotherapy prior to surgery is effective in colon cancer
Patients with colon cancer, but no distant metastases, can benefit from a short course of immunotherapy while waiting for their surgery, as it can cause tumours to shrink substantially or clear up in a very short time.
Researchers discover potential boost to immunotherapy
Mount Sinai researchers have discovered a pathway that regulates special immune system cells in lung cancer tumors, suppressing them and allowing tumors to grow.
Predicting immunotherapy success
Weizmann Institute of Science researchers have now identified new markers that can help predict which patients have a better chance for a positive response to immunotherapy treatments.
Designer probiotic treatment for cancer immunotherapy
Columbia Engineers have engineered probiotics to safely deliver immunotherapies within tumors, including nanobodies against two proven therapeutic targets -- PD-L1 and CTLA-4.
Cancer vaccine could boost the effectiveness of immunotherapy
Supercharging the mutation rate in cancer cells can create a powerful vaccine that is able to boost the effectiveness of immunotherapy, a major new study reports.
Math models add up to improved cancer immunotherapy
A merger of math and medicine may help to improve the efficacy of immunotherapies, potentially life-saving treatments that enhance the ability of the patient's own immune system to attack cancerous tumors.
B cells linked to effective cancer immunotherapy
Cancer patients responded better to immunotherapy and had a better prognosis if their melanoma tumors contained specific clusters of B cells, according to new research from Lund University in Sweden.
B cells: New allies in sarcoma immunotherapy?
How can we improve and better personalize the treatment of soft tissue sarcomas, these particularly resistant and aggressive forms of cancer?
Transition to exhaustion: clues for cancer immunotherapy
Emory research on immune cells 'exhausted' by chronic viral infection provides clues on how to refine cancer immunotherapy.
Using artificial intelligence to determine whether immunotherapy is working
Currently, only about 20% of all cancer patients will actually benefit from costly immunotherapy.
More Immunotherapy News and Immunotherapy Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.