Scientists discover world's smallest superconductor

March 29, 2010

ATHENS, Ohio (March 29, 2010) -- Scientists have discovered the world's smallest superconductor, a sheet of four pairs of molecules less than one nanometer wide. The Ohio University-led study, published Sunday as an advance online publication in the journal Nature Nanotechnology, provides the first evidence that nanoscale molecular superconducting wires can be fabricated, which could be used for nanoscale electronic devices and energy applications.

"Researchers have said that it's almost impossible to make nanoscale interconnects using metallic conductors because the resistance increases as the size of wire becomes smaller. The nanowires become so hot that they can melt and destruct. That issue, Joule heating, has been a major barrier for making nanoscale devices a reality," said lead author Saw-Wai Hla, an associate professor of physics and astronomy with Ohio University's Nanoscale and Quantum Phenomena Institute.

Superconducting materials have an electrical resistance of zero, and so can carry large electrical currents without power dissipation or heat generation. Superconductivity was first discovered in 1911, and until recently, was considered a macroscopic phenomenon. The current finding suggests, however, that it exists at the molecular scale, which opens up a novel route for studying this phenomenon, Hla said. Superconductors currently are used in applications ranging from supercomputers to brain imaging devices.

In the new study, which was funded by the U.S. Department of Energy, Hla's team examined synthesized molecules of a type of organic salt, (BETS)2-GaCl4, placed on a surface of silver. Using scanning tunneling spectroscopy, the scientists observed superconductivity in molecular chains of various lengths. For chains below 50 nanometers in length, superconductivity decreased as the chains became shorter. However, the researchers were still able to observe the phenomenon in chains as small as four pairs of molecules, or 3.5 nanometers in length.

To observe superconductivity at this scale, the scientists needed to cool the molecules to a temperature of 10 Kelvin. Warmer temperatures reduced the activity. In future studies, scientists can test different types of materials that might be able to form nanoscale superconducting wires at higher temperatures, Hla said.

"But we've opened up a new way to understand this phenomenon, which could lead to new materials that could be engineered to work at higher temperatures," he said.

The study also is noteworthy for providing evidence that superconducting organic salts can grow on a substrate material.

"This is also vital if one wants to fabricate nanoscale electronic circuits using organic molecules," Hla added.
Collaborators on the paper include Kandal Clark, a doctoral student in the Russ College of Engineering and Technology at Ohio University; Sajida Khan, a graduate student in the Department of Physics and Astronomy at Ohio University; Abdou Hassanien, a researcher with the Nanotechnology Research Institute, Advanced Industrial Science and Technology (AIST) and the Japan Science and Technology Agency's Core Research of Evolutional Science & Technology (JST-CREST) in Japan who conducted the work as a visiting scientist at Ohio University; Hisashi Tanaka, a scientist at AIST and JST-CREST who synthesized the molecules; and Kai-Felix Braun, a scientist with the Physikalisch Technische Bundesanstalt in Braunschweig, Germany, who conducted the calculations at the Ohio Supercomputing Center.

Contacts: Saw-Wai Hla, (740) 593-1727,; Director of Research Communications Andrea Gibson, (740) 597-2166,

Note to media: Please contact sources for related scientific images of the superconductor.

Ohio University

Related Superconductivity Articles from Brightsurf:

New kind of superconductivity discovered
Superconductivity is a phenomenon where an electric circuit loses its resistance and becomes extremely efficient under certain conditions.

Room temperature superconductivity creeping toward possibility
The possibility of achieving room temperature superconductivity took a tiny step forward with a recent discovery by a team of Penn State physicists and materials scientists.

A 'breath of nothing' provides a new perspective on superconductivity
Zero electrical resistance at room temperature? A material with this property, i.e. a room temperature superconductor, could revolutionize power distribution.

New Princeton study takes superconductivity to the edge
The existence of superconducting currents, or supercurrents, along the exterior of a superconductor, has been surprisingly hard to find.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

How a magnet could help boost understanding of superconductivity
Physicists have unraveled a mystery behind the strange behavior of electrons in a ferromagnet, a finding that could eventually help develop high temperature superconductivity.

New study explains why superconductivity takes place in graphene
Theoretical physicists take important step in development of high temperature superconductors.

Better studying superconductivity in single-layer graphene
A new study published in EPJ B demonstrates that an existing technique is better suited for probing superconductivity in pure, single-layer graphene than previously thought.

Stressing metallic material controls superconductivity
No strain, no gain -- that's the credo for Cornell researchers who have helped find a way to control superconductivity in a metallic material by stressing and deforming it.

First report of superconductivity in a nickel oxide material
Scientists at SLAC and Stanford have made the first nickel oxide material that shows clear signs of superconductivity - the ability to transmit electrical current with no loss.

Read More: Superconductivity News and Superconductivity Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to