Researchers identify potential new target for treating hepatitis C

March 29, 2010

SALT LAKE CITY - A team of scientists including University of Utah researchers has discovered that binding of a potent inhibitor of the hepatitis C virus (HCV) to the genetic material of the virus causes a major conformational change that may adversely affect the ability of the virus to replicate. This discovery, published in the March 29 early edition of the Proceedings of the National Academy of Sciences, provides a potential new target for structure-based design of new hepatitis C treatments.

Hepatitis C is a major public health problem affecting as many as 170 million people worldwide, with 2 million to 3 million new cases diagnosed each year. In the United States, HCV infection is the major cause of liver cancer and liver transplantation and it results in the death of approximately 10,000 people each year. Currently, the most effective treatment for hepatitis C is an agent called pegylated interferon, which is often combined with an antiviral drug called ribavirin.

"The available therapies for hepatitis C infection have limited effectiveness, with less than a 50 percent response," says Darrell R. Davis, Ph.D., the lead author and professor and interim chair of medicinal chemistry and professor of biochemistry at the University of Utah. "However, small molecules that inhibit viral replication have been reported and they represent potential opportunities for new, more effective HCV treatments."

HCV is a member of the Flaviviridae family of viruses, which also includes the viruses that cause yellow fever and dengue. There are six major genotypes of HCV, which differ slightly in their genetic constitution and vary in their response to treatment. HCV has a single strand of ribonucleic acid (RNA) as its genetic material and the virus replicates by copying this RNA. Previous research has shown that the three-dimensional structure of HCV RNA appears to be crucial for initiating the viral replication process.

Davis and his colleagues, including scientists from Isis Pharmaceuticals Inc., in Carlsbad, Calif., studied a potent small-molecule HCV replication inhibitor called Isis-11 to understand how it inhibits viral replication. They discovered that Isis-11 binds to a region of the viral RNA that is common to all six genotypes of HCV, altering the structure in a way that likely prevents the synthesis of viral proteins. The Isis-11 inhibitor effectively eliminated a bent RNA conformation that other laboratories have shown is required for the proper function of the HCV genomic RNA.

"Binding of Isis-11 resulted in a major conformational change in a specific region of HCV RNA that is thought to be critical for viral replication," says Davis. "This alteration in structure provides a possible mechanism for the antiviral activity of Isis-11 and other HCV replication inhibitors in that chemical class."

It is possible that, because HCV replication inhibitors like Isis-11 bind to a region of RNA that is conserved among all genotypes of the virus, they might be effective against a majority of HCV genotypes. Davis and his colleagues also noted that Isis-11 binds with low affinity to HCV RNA, resulting in a relatively loose bond and suggesting that there is considerable potential for optimizing this class of HCV replication inhibitors by modifying them to have tighter bonds to the genetic material of the virus.

"Now that we know the structure of the inhibitor-found form of the HCV RNA we can use this structure as a basis for a design strategy that will increase the anti-viral activity of these inhibitors," says Davis. "Hopefully, our findings will eventually lead to a new class of highly potent and specific HCV therapeutics."
-end-
Isis Pharmaceuticals provided the Isis compound for this study, but did not give any funding for the research.

University of Utah Health Sciences

Related Hepatitis Articles from Brightsurf:

Busting Up the Infection Cycle of Hepatitis B
Researchers at the University of Delaware have gained new understanding of the virus that causes hepatitis B and the ''spiky ball'' that encloses its genetic blueprint.

Liver cancer: Awareness of hepatitis D must be raised
Scientists from the University of Geneva (UNIGE) and the Geneva University Hospitals (HUG) have studied the most serious consequence of chronic hepatitis: hepatocellular carcinoma.

Hepatitis B: New therapeutic approach may help to cure chronic hepatitis B infection
Researchers at Helmholtz Zentrum München, Technical University of Munich (TUM) and the German Center for Infection Research (DZIF) have developed a novel therapeutic approach to cure chronic hepatitis B.

Anti-hepatitis medicine surprises
A new effective treatment of hepatitis C not only combats the virus, but is also effective against potentially fatal complications such as reduced liver functioning and cirrhosis.

Nanotechnology delivers hepatitis B vaccine
X-ray imaging shows that nanostructured silica acts as a protective vehicle to deliver intact antigen to the intestine so that it can trigger an immune response.

Checkmate for hepatitis B viruses in the liver
Researchers at Helmholtz Zentrum München and the Technical University of Munich, working in collaboration with researchers at the University Medical Center Hamburg-Eppendorf and the University Hospital Heidelberg, have for the first time succeeded in conquering a chronic infection with the hepatitis B virus in a mouse model.

How common is Hepatitis C infection in each US state?
Hepatitis C virus infection is a major cause of illness and death in the United States and injection drug use is likely fueling many new cases.

New strains of hepatitis C found in Africa
The largest population study of hepatitis C in Africa has found three new strains of the virus circulating in the general population in sub-Saharan Africa.

High stability of the hepatitis B virus
At room temperature, hepatitis B viruses (HBV) remain contagious for several weeks and they are even able to withstand temperatures of four degrees centigrade over the span of nine months.

Findings could lead to treatment of hepatitis B
Researchers have gained new insights into the virus that causes hepatitis B -- a life-threatening and incurable infection that afflicts more than 250 million people worldwide.

Read More: Hepatitis News and Hepatitis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.