Nav: Home

Researchers developed manufacturing method for batteries with organic electrode materials

March 29, 2016

With people wanting to use smaller electronic devices, smaller energy storage systems are needed. Researchers of Aalto University in Finland have demonstrated the fabrication of electrochemically active organic lithium electrode thin films, which help make microbatteries more efficient than before. Researchers used a combined atomic/molecular layer deposition (ALD/MLD) technique, to prepare lithium terephthalate, a recently found anode material for a lithium-ion battery.

When microbatteries are manufatured, the key challenge is to make them able to store large amounts of energy in a small space. One way to improve the energy density is to manufacure the batteries based on three-dimensional microstructured architectures. This may increase the effective surface inside a battery- even dozens of times. However, the production of materials fit for these has proven to be very difficult.

- ALD is a great method for making battery materials fit for 3D microstructured architectures. Our method shows it is possible to even produce organic electrode materials by using ALD, which increases the opportunities to manufacture efficient microbatteries, says doctoral candidate Mikko Nisula from Aalto University.

The researchers' deposition process for Li-terephthalate is shown to comply well with the basic principles of ALD-type growth, including the sequential self-saturated surface reactions, which is a necessity when aiming at micro-lithium-ion devices with three-dimensional architectures. The as-deposited films are found to be crystalline across the deposition temperature range of 200?280 °C, which is a trait that is highly desired for an electrode material, but rather unusual for hybrid organic?inorganic thin films. An excellent rate capability is ascertained for the Li-terephthalate films, with no conductive additives required. The electrode performance can be further enhanced by depositing a thin protective LiPON solid-state electrolyte layer on top of Li-terephthalate. This yields highly stable structures with a capacity retention of over 97% after 200 charge/discharge cycles at 3.2 C.

The study about the method has now been published in the latest edition of Nano Letters.
-end-
For more information:

Doctoral candidate Mikko Nisula, Aalto University mikko.nisula@aalto.fi

Professor Maarit Karppinen, School of Chemical Technology, Aalto University maarit.karppinen@aalto.fi, tel. +358 50 384 1726

Press photos:http://materialbank.aalto.fi:80/public/b261c235c8EB.aspx

Captions:

3. Researchers tested material on coin cells. Photo: Mikko Raskinen / Aalto University

5. Sample makes a steel substrate look blue. Behind the hand there is a ALD reactor. Photo: Mikko Raskinen / Aalto University

6. Doctoral canditate Mikko Nisula holds in his hand a sample on a steel substrate. Behind the hand there is a ALD reactor. Photo: Mikko Raskinen / Aalto University

Tweet:

Smaller batteries for smaller devices: ALD/MLD used for organic lithium electrode thin films @aaltouniversity

Article:

Mikko Nisula and Maarit Karppinen: Atomic/Molecular Layer Deposition of Lithium Terephthalate Thin Films as High Rate Capability Li-Ion Battery Anodes. Nano Lett., 2016, 16 (2), pp 1276-1281. Link to the article: http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b04604?journalCode=nalefd

Aalto University

Related Lithium Articles:

A seaweed derivative could be just what lithium-sulfur batteries need
Lithium-sulfur batteries have great potential as a low-cost, high-energy, energy source for both vehicle and grid applications.
Risk of cardiac malformations from lithium during pregnancy less significant
New research suggests there may be a more modest increased risk of cardiac defects when using lithium during the first trimester of pregnancy.
Graphene-nanotube hybrid boosts lithium metal batteries
Rice University scientists build high-capacity lithium metal batteries with anodes made of a graphene-carbon nanotube hybrid.
Better cathode materials for lithium-sulphur-batteries
A team at the Helmholtz-Zentrum Berlin (HZB) has for the first time fabricated a nanomaterial made from nanoparticles of a titanium oxide compound (Ti4O7) that is characterized by an extremely large surface area, and tested it as a cathode material in lithium-sulphur batteries.
Stabilizing molecule could pave way for lithium-air fuel cell
Lithium-oxygen fuel cells boast energy density levels comparable to fossil fuels and are thus seen as a promising candidate for future transportation-related energy needs.
Freezing lithium batteries may make them safer and bendable
Columbia Engineering Professor Yuan Yang has developed a new method that could lead to lithium batteries that are safer, have longer battery life, and are bendable, providing new possibilities such as flexible smartphones.
Electrochemical performance of lithium-ion capacitors
Pre-lithiated multiwalled carbon nanotubes and activated carbon (AC) materials were used as anode and cathode respectively for Lithium-ion capacitors (LICs).
Lighter, more efficient, safer lithium-ion batteries
Researchers from Universidad Carlos III de Madrid and the Council for Scientific Research (initialed CSIC in Spanish) have patented a method for making new ceramic electrodes for lithium-ion batteries that are more efficient, cheaper, more resistant and safer than conventional batteries.
Clarifying how lithium ions ferry around in rechargeable batteries
IBS scientists observe the real-time ultrafast bonding of lithium ions with the solvents, in the same process that happens during charging and discharging of lithium batteries, and conclude that a new theory is needed.
New gel-like coating beefs up the performance of lithium-sulfur batteries
Yale scientists have developed an ultra-thin coating material that has the potential to extend the life and improve the efficiency of lithium-sulfur batteries, one of the most promising areas of energy research today.

Related Lithium Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...