Nav: Home

New harmonized test protocols for PEM fuel cells in hydrogen vehicles

March 29, 2016

A lack of standards for testing polymer electrolyte membrane (PEM) fuel cells - the most attractive type of fuel cells for powering vehicles - has hampered objective comparative assessment of their performance and durability under operating conditions and hence of their technological progress. By proposing a test methodology including a set of representative operating conditions and getting European industry and research stakeholders to agree on it, the JRC has helped fill the gap.

The resulting harmonised test protocols allow the evaluation of the performance and durability of PEM fuel cells by focusing on the membrane-electrode assemblies (MEA), which constitute the heart of a fuel cell.

Fuel cells generate electricity by combining hydrogen fuel and an oxidant (oxygen or air) electrochemically in a more energy-efficient and environment-friendly way than today´s modern combustion-based power technologies. However, technological progress to enhance performance and durability and reduce costs is still required. Among all fuel cell types the polymer electrolyte membrane (PEM) fuel cells are the most promising for powering vehicles due to their high energy density, low operating temperature and high efficiency.

The protocols, described in a recent JRC report, were established through a sustained cooperation with industry and research organisations participating in R&I projects for automotive applications, funded by the European Fuel Cell and Hydrogen Joint Undertaking (FCH-JU). The latter is an industry-led public private partnership (PPP) supporting the technological development of fuel cell and hydrogen energy technologies in Europe. The report specifies reference operating conditions and boundaries within which a cell is expected to operate. The harmonised test methodology enables investigating the influence of individual operating parameters on MEA performance, including when subjected to more challenging boundary conditions also called "stressor conditions". The latter cover load cycling, mechanical effects, fuel and air contaminants (impurities) and environmental conditions.

The use of the protocols will facilitate a factual assessment of the technology status achieved by the relevant FCH-JU funded projects, thereby allowing improved target-setting, monitoring of progress, and evaluating the return-on-investment of public funding of R&I activities on automotive fuel cells.

The US Department of Energy (DoE) Fuel Cell Technology Office and Asian car component manufacturers have expressed interest for the protocols.
-end-
Background: This research contributes to the objectives of the Commission's Energy Union strategy, speeding up the decarbonisation in the transport sector, its progressive switch to alternative fuels and the integration of the energy and transport systems.

Related links: EU harmonised test protocols for PEMFC MEA testing in single cell configuration for automotive applications

More information on JRC fuel cells activities: https://ec.europa.eu/jrc/en/research-facility/fuel-cell-test-facility
https://ec.europa.eu/jrc/sites/default/files/Fuel%20cells_en.pdf

European Commission Joint Research Centre

Related Fuel Cells Articles:

Paving the way for hydrogen fuel cells
The hype around hydrogen fuel cells has died down, but scientists have continued to pursue new technologies that could enable such devices to gain a firmer foothold.
Ruthenium rules for new fuel cells
Rice University scientists have fabricated a durable catalyst for high-performance fuel cells by attaching single ruthenium atoms to graphene.
Multifunctional catalyst for poison-resistant hydrogen fuel cells
A Kyushu University-led collaboration developed a catalyst that can oxidize both hydrogen and carbon monoxide in fuel cells.
Electrocatalyst nanostructures key to improved fuel cells, electrolyzers
Purdue University scientists' simulations have unraveled the mystery of a new electrocatalyst that may solve a significant problem associated with fuel cells and electrolyzers.
Nanoalloys 10 times as effective as pure platinum in fuel cells
A new type of nanocatalyst can result in the long-awaited commercial breakthrough for fuel cell cars.
Resilient red blood cells need fuel to adapt their shape to the environment
An international research team led by Osaka University built a novel 'Catch-Load-Launch' microfluidic device to monitor the resilience of red blood cells after being held in a narrow channel for various periods of time.
Cancer immunotherapy: Revived T cells still need fuel
Drugs targeting the PD-1 pathway are often described as 'releasing the brakes' on killer T cells.
Fuel cells with PFIA-membranes
HZB scientists have teamed up with partners of 3M Company in order to explore the water management in an alternative proton exchange membrane type, called PFIA.
New class of fuel cells offer increased flexibility, lower cost
A new class of fuel cells based on a newly discovered polymer-based material could bridge the gap between the operating temperature ranges of two existing types of polymer fuel cells, a breakthrough with the potential to accelerate the commercialization of low-cost fuel cells for automotive and stationary applications.
Pancreatic cancer cells find unique fuel sources to keep from starving
Pancreatic cancer cells avert starvation in dense tumors by ordering nearby support cells to supply them with an alternative source of nutrition.

Related Fuel Cells Reading:

Build Your Own Fuel Cells
by Phillip Hurley (Author)

The technology of the future is here today - and now available to the non-engineer! Build Your Own Fuel Cells contains complete, easy to understand illustrated instructions for building several types of proton exchange membrane (PEM) fuel cells - and, templates for 6 PEM fuel cell types, including convection fuel cells and oxygen-hydrogen fuel cells, in both single slice and stacks.

Low tech/high quality

Two different low-tech fuel cell construction methods are covered: one requires a bandsaw and drill press, and the other only a few hand tools. Anyone... View Details


Fuel Cell Fundamentals
by Ryan O'Hayre (Author), Suk-Won Cha (Author), Whitney Colella (Author), Fritz B. Prinz (Author)

A complete, up-to-date, introductory guide to fuel cell technology and application

Fuel Cell Fundamentals provides a thorough introduction to the principles and practicalities behind fuel cell technology. Beginning with the underlying concepts, the discussion explores fuel cell thermodynamics, kinetics, transport, and modeling before moving into the application side with guidance on system types and design, performance, costs, and environmental impact. This new third edition has been updated with the latest technological advances and relevant calculations, and enhanced... View Details


Fuel Cell Fundamentals
by Ryan O'Hayre (Author), Suk-Won Cha (Author), Whitney Colella (Author), Fritz B. Prinz (Author)

Fuel Cell Fundamentals is an introductory-level textbook covering the basic science and engineering behind fuel cell technology. Focusing on the fundamentals, it provides straightforward descriptions of how fuel cells work, why they offer the potential for high efficiency, and how their unique advantages can best be used. Emphasis is placed on the founding scientific principles that govern fuel cell operations. Designed to be accessible to fuel cell beginners, it is suitable for any engineering or science major with a background in calculus, basic physics, and elementary thermodynamics. The... View Details


Fuel Cell Fundamentals
by Ryan O'Hayre (Author), Suk-Won Cha (Author), Whitney Colella (Author), Fritz B. Prinz (Author)

As the search for alternative fuels heats up, no topic is hotter than fuel cells. Filling a glaring gap in the literature, Fuel Cell Fundamentals, Second Edition gives advanced undergraduate and beginning level graduate students an important introduction to the basic science and engineering behind fuel cell technology. Emphasizing the foundational scientific principles that apply to any fuel cell type or technology, the text provides straightforward descriptions of how fuel cells work, why they offer the potential for high efficiency, and how their unique advantages can best be used.... View Details


Designing and Building Fuel Cells
by Colleen Spiegel (Author)

Acquire an All-in-One Toolkit for Expertly Designing, Modeling, and Constructing High-Performance Fuel Cells

Designing and Building Fuel Cells equips you with a hands-on guide for the design, modeling, and construction of fuel cells that perform as well or better than some of the best fuel cells on the market today.

Filled with over 120 illustrations and schematics of fuel cells and components, this “one-stop” guide covers fuel cell applications…fuels and the hydrogen economy…fuel cell chemistry, thermodynamics, and electrochemistry…fuel cell modeling,... View Details


Build A Solar Hydrogen Fuel Cell System
by Phillip Hurley (Author)

Learn how to construct and operate the components of a solar hydrogen fuel cell system: the fuel cell stack, the electrolyzer to generate hydrogen fuel, simple hydrogen storage, and solar panels designed specifically to run electrolyzers for hydrogen production. Complete, clear, illustrated instructions to build all the major components make it easy for the non-engineer to understand and work with this important new technology.

Featured are the author's innovative and practical designs for efficient solar powered hydrogen production including:

ESPMs (Electrolyzer Specific... View Details


Fuel Cells: Principles, Design, and Analysis (Mechanical and Aerospace Engineering Series)
by Shripad T. Revankar (Author), Pradip Majumdar (Author)

Fuel Cells: Principles, Design, and Analysis considers the latest advances in fuel cell system development and deployment, and was written with engineering and science students in mind. This book provides readers with the fundamentals of fuel cell operation and design, and incorporates techniques and methods designed to analyze different fuel cell systems. It builds on three main themes: basic principles, analysis, and design.

The section on basic principles contains background information on fuel cells, including fundamental principles such as... View Details


Hydrogen and Fuel Cells: Emerging Technologies and Applications (The Sustainable World Series)
by Bent Sørensen (Author)

The next several years will see a massive emergence of hydrogen fuel cells as an alterative energy option in both transportation and domestic use. The long-range expectation is that hydrogen will be used as a fuel, produced either from renewable energy, fossil, or nuclear sources, offering an environmentally acceptable and efficient source of power/energy.

Hydrogen and Fuel Cells describes in detail the techniques associated with all the production and conversion steps and the set-up of systems at a level suited for both academic and professional use. The book not only describes the... View Details


Electrochemical Energy Synthesis and Storage in Battery and Fuel Cell
by Dr Subir Paul (Author)

This book is for the students and professionals in chemical, electrical mechanical and material engineering with specialization in Renewable Energy, Electrochemical storage energy, Primary and secondary battery, Fuel cell and Energy materials. The book is also for business professionals and entrepreneurs who want to invest on energy sectors to synthesize renewable energy using woody biomass to pure electrical energy in fuel cell. The book will be helpful for the people who want to develop new and high energetic future rechargeable batteries with nano and advanced materials. Our earth... View Details


Fuel Cells
by Paul Breeze (Author)

Fuel Cells is a concise, up-to-date and accessible guide to the evolution of the use of electrochemistry to generate power. The author provides a comprehensive exploration of the history of fuel cells, the environmental concerns which came into prominence in the 1980s and the economic factors associated with this method of power generation.

Examples discussed include Alkaline Fuel Cells, Phosphoric Acid Fuel Cells, Molton Carbonate Fuel Cells and Solid Oxide Fuel Cells, making this a valuable and insightful read for those in the power generation market and those in... View Details

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Simple Solutions
Sometimes, the best solutions to complex problems are simple. But simple doesn't always mean easy. This hour, TED speakers describe the innovation and hard work that goes into achieving simplicity. Guests include designer Mileha Soneji, chef Sam Kass, sleep researcher Wendy Troxel, public health advocate Myriam Sidibe, and engineer Amos Winter.
Now Playing: Science for the People

#448 Pavlov (Rebroadcast)
This week, we're learning about the life and work of a groundbreaking physiologist whose work on learning and instinct is familiar worldwide, and almost universally misunderstood. We'll spend the hour with Daniel Todes, Ph.D, Professor of History of Medicine at The Johns Hopkins University, discussing his book "Ivan Pavlov: A Russian Life in Science."