Nav: Home

Decoding sugar molecules offers new key for combating muscular dystrophy

March 29, 2016

A group of Japanese scientists have succeeded in decoding a sugar molecule and clarifying a mechanism linked to muscular dystrophy. Their discovery has potential implications for muscular dystrophy treatment. The results of their research were published in the journal Cell Reports on February 25, 2016 EST.

Key research group members include Professor TODA Tatsushi, Associate Professor KANAGAWA Motoi, and Associate Professor KOBAYASHI Kazuhiro from the Kobe University Graduate School of Medicine; Doctor ENDO Tamao, Vice-director from the Tokyo Metropolitan Institute of Gerontology; and Doctor WADA Yoshinao, Director of the Osaka Medical Center and Research Institute for Maternal and Child Health.

Muscular dystrophy is an incurable genetic condition marked by progressive weakening of the muscles. The condition is caused by mutations in the genes responsible for muscle structure and functions. Previous research had revealed three major genes involved in a certain family of muscular dystrophies: fukutin, fukutin-related proteins (FKRP), and isoprenoid synthase domain-containing (ISPD). When these three genes do not function correctly, abnormalities occur in the sugar molecules that bind to the dystroglycan protein on the surface of muscle cells. However, until now the exact composition of the sugar molecules and the role of these genes was unclear.

Professor Toda's research group succeeded in creating a sugar molecule in a cell culture. Using mass spectrometric analysis, they calculated the mass of each component in the sugar molecule and identified an unusual sugar unit called "ribitol 5-phosphate". The group went on to discover that three causative genes of muscular dystrophy (ISPD, fukutin, and FKRP) are all involved in creating this sugar unit. In a patient cell model with each of these three genes removed, ribitol 5-phosphate was also absent, proving that the abnormal synthesis of ribitol 5-phosphate is a cause of the condition. When CDP-ribitol, one of the ingredients for ribitol 5-phosphate, was added to the cell model, the abnormalities in the sugar molecule were resolved.

The sugar unit ribitol 5-phosphate was previously only confirmed in bacteria and some plants, so the researchers were surprised to discover that in mammals it functions as a component of sugar-protein interactions. They suggest that the sugar unit also has a key role in embryonic tissue development. Abnormalities in its combination with proteins could cause cancer metastasis and viral infection as well as muscular dystrophy.

"Sugar molecules play a key role in many biological processes, but their composition is difficult to determine and research on them is still limited", said Professor Toda. "The decoding of this sugar molecule has implications for the field of life sciences, as well as being a step further in the treatment of muscular dystrophy".
-end-


Kobe University

Related Muscular Dystrophy Articles:

Designed proteins to treat muscular dystrophy
The cell scaffolding holds muscle fibers together and protects them from damage.
Gene-editing alternative corrects Duchenne muscular dystrophy
Using the new gene-editing enzyme CRISPR-Cpf1, researchers at UT Southwestern Medical Center have successfully corrected Duchenne muscular dystrophy in human cells and mice in the lab.
GW researcher finds genetic cause of new type of muscular dystrophy
George Washington University & St. George's University of London research, published in The American Journal of Human Genetics, outlines a newly discovered genetic mutation associated with short stature, muscle weakness, intellectual disability, and cataracts, leading researchers to believe this is a new type of congenital muscular dystrophy.
Not all Europeans receive the same care for Duchenne muscular dystrophy
Duchenne muscular dystrophy (DMD), a progressive muscle disease affecting one in 3,800-6,300 live male births and leads to ambulatory loss, respiratory problems, cardiomyopathy, and early death of patients in their 20s or 30s.
A vitamin could help treat Duchenne muscular dystrophy
Researchers are working on a new strategy to combat one of the most severe forms of muscular dystrophy.
New research increases understanding of Duchenne muscular dystrophy
A new paper, co-written by faculty at Binghamton University, State University of New York, increases the understanding of Duchenne muscular dystrophy (DMD) -- one of the most common lethal genetic disorders -- and points to potential therapeutic approaches.
Cause of heart arrhythmia in adult muscular dystrophy clarified
An international joint research group found that the cause of heart arrhythmia in myotonic dystrophy was RNA abnormalities in the sodium channel in the heart, clarifying the symptom's mechanism.
New muscular dystrophy drug target identified
Scientists at the University of Liverpool have discovered that muscle cells affected by muscular dystrophy contain high levels of an enzyme that impairs muscle repair.
New insights into muscular dystrophy point to potential treatment avenues
Certain stem cells in our bodies have the potential to turn into either fat or muscle.
Decoding sugar molecules offers new key for combating muscular dystrophy
A group of Japanese scientists have succeeded in decoding a sugar molecule and clarifying a mechanism linked to muscular dystrophy.

Related Muscular Dystrophy Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...