Decoding sugar molecules offers new key for combating muscular dystrophy

March 29, 2016

A group of Japanese scientists have succeeded in decoding a sugar molecule and clarifying a mechanism linked to muscular dystrophy. Their discovery has potential implications for muscular dystrophy treatment. The results of their research were published in the journal Cell Reports on February 25, 2016 EST.

Key research group members include Professor TODA Tatsushi, Associate Professor KANAGAWA Motoi, and Associate Professor KOBAYASHI Kazuhiro from the Kobe University Graduate School of Medicine; Doctor ENDO Tamao, Vice-director from the Tokyo Metropolitan Institute of Gerontology; and Doctor WADA Yoshinao, Director of the Osaka Medical Center and Research Institute for Maternal and Child Health.

Muscular dystrophy is an incurable genetic condition marked by progressive weakening of the muscles. The condition is caused by mutations in the genes responsible for muscle structure and functions. Previous research had revealed three major genes involved in a certain family of muscular dystrophies: fukutin, fukutin-related proteins (FKRP), and isoprenoid synthase domain-containing (ISPD). When these three genes do not function correctly, abnormalities occur in the sugar molecules that bind to the dystroglycan protein on the surface of muscle cells. However, until now the exact composition of the sugar molecules and the role of these genes was unclear.

Professor Toda's research group succeeded in creating a sugar molecule in a cell culture. Using mass spectrometric analysis, they calculated the mass of each component in the sugar molecule and identified an unusual sugar unit called "ribitol 5-phosphate". The group went on to discover that three causative genes of muscular dystrophy (ISPD, fukutin, and FKRP) are all involved in creating this sugar unit. In a patient cell model with each of these three genes removed, ribitol 5-phosphate was also absent, proving that the abnormal synthesis of ribitol 5-phosphate is a cause of the condition. When CDP-ribitol, one of the ingredients for ribitol 5-phosphate, was added to the cell model, the abnormalities in the sugar molecule were resolved.

The sugar unit ribitol 5-phosphate was previously only confirmed in bacteria and some plants, so the researchers were surprised to discover that in mammals it functions as a component of sugar-protein interactions. They suggest that the sugar unit also has a key role in embryonic tissue development. Abnormalities in its combination with proteins could cause cancer metastasis and viral infection as well as muscular dystrophy.

"Sugar molecules play a key role in many biological processes, but their composition is difficult to determine and research on them is still limited", said Professor Toda. "The decoding of this sugar molecule has implications for the field of life sciences, as well as being a step further in the treatment of muscular dystrophy".

Kobe University

Related Muscular Dystrophy Articles from Brightsurf:

Using CRISPR to find muscular dystrophy treatments
A study from Boston Children's Hospital used CRISPR-Cas9 to better understand facioscapulohumeral muscular dystrophy (FSHD) and explore potential treatments by systematically deleting every gene in the genome.

Duchenne muscular dystrophy diagnosis improved by simple accelerometers
Testing for Duchenne muscular dystrophy can require specialized equipment, invasive procedures and high expense, but measuring changes in muscle function and identifying compensatory walking gait could lead to earlier detection.

New therapy targets cause of adult-onset muscular dystrophy
The compound designed at Scripps Research, called Cugamycin, works by recognizing toxic RNA repeats and destroying the garbled gene transcript.

Gene therapy cassettes improved for muscular dystrophy
Experimental gene therapy cassettes for Duchenne muscular dystrophy have been modified to deliver better performance.

Discovery points to innovative new way to treat Duchenne muscular dystrophy
Researchers at The Ottawa Hospital and the University of Ottawa have discovered a new way to treat the loss of muscle function caused by Duchenne muscular dystrophy in animal models of the disease.

Extracellular RNA in urine may provide useful biomarkers for muscular dystrophy
Massachusetts General Hospital researchers have found that extracellular RNA in urine may be a source of biomarkers for the two most common forms of muscular dystrophy, noninvasively providing information about whether therapeutic drugs are having the desired effects on a molecular level.

Tamoxifen and raloxifene slow down the progression of muscular dystrophy
Steroids are currently the only available treatment to reduce the repetitive cycles of inflammation and disease progression associated with functional deterioration in patients with muscular dystrophy (MD).

Designed proteins to treat muscular dystrophy
The cell scaffolding holds muscle fibers together and protects them from damage.

Gene-editing alternative corrects Duchenne muscular dystrophy
Using the new gene-editing enzyme CRISPR-Cpf1, researchers at UT Southwestern Medical Center have successfully corrected Duchenne muscular dystrophy in human cells and mice in the lab.

GW researcher finds genetic cause of new type of muscular dystrophy
George Washington University & St. George's University of London research, published in The American Journal of Human Genetics, outlines a newly discovered genetic mutation associated with short stature, muscle weakness, intellectual disability, and cataracts, leading researchers to believe this is a new type of congenital muscular dystrophy.

Read More: Muscular Dystrophy News and Muscular Dystrophy Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to