Nav: Home

How to make metal alloys that stand up to hydrogen

March 29, 2016

CAMBRIDGE, MA -- High-tech metal alloys are widely used in important materials such as the cladding that protects the fuel inside a nuclear reactor. But even the best alloys degrade over time, victims of a reactor's high temperatures, radiation, and hydrogen-rich environment. Now, a team of MIT researchers has found a way of greatly reducing the damaging effects these metals suffer from exposure to hydrogen.

The team's analysis focused on zirconium alloys, which are widely used in the nuclear industry, but the basic principles they found could apply to many metallic alloys used in other energy systems and infrastructure applications, the researchers say. The findings appear in the journal Physical Review Applied, in a paper by MIT Associate Professor Bilge Yildiz, postdoc Mostafa Youssef, and graduate student Ming Yang.

Hydrogen, which is released when water molecules from a reactor's coolant break apart, can enter the metal and react with it. This leads to a reduction in the metal's ductility, or its ability to sustain a mechanical load before fracturing. That in turn can lead to premature cracking and failure. In nuclear power plants, "the mechanical integrity of that cladding is extremely important," Yildiz says, so finding ways to improve its longevity is a high priority.

But it turns out that the initial entry of the hydrogen atoms into the metal depends crucially on the characteristics of a layer that forms on the metal's surface.

A coating of zirconium oxide naturally forms on the surface of the zirconium in high-temperature water, and it acts as a kind of protective barrier. If carefully engineered, this layer of oxide could inhibit hydrogen from getting into the crystal structure of the metal. Or, under other conditions, it could emit the hydrogen in gas form.

While researchers have been studying hydrogen embrittlement for decades, Yildiz says, "almost all of the work has been on what happens to hydrogen inside the metal: What are the consequences, where does it go, how does it lead to embrittlement? And we learned a lot from those studies." But there had been very little work on how hydrogen gets inside in the first place, she says. How hydrogen can enter through this surface oxide layer, or how it can be discharged as a gas from that layer, has not been quantified.

"If we know how it enters or how it can be discharged or ejected from the surface, that gives us the ability to predict surface modifications that can reduce the rate of entry," Yildiz says. Her team has found that it's possible to do just that, improving the barrier's ability to block incoming hydrogen, potentially by as much as a thousandfold.

The hydrogen has to first dissolve in the oxide layer before penetrating into the bulk of the metal beneath. But the hydrogen's dissolution can be controlled by doping that layer -- that is, by introducing atoms of another element or elements into it. The team found that the amount of hydrogen solubility in the oxide follows a valley-shaped curve, depending on the doping element's ability to introduce electrons into the oxide layer.

"There is a certain type of doping element that minimizes hydrogen's ability to penetrate, whereas other doping elements can introduce a maximum amount of electrons in the oxide, and facilitate the ejection of hydrogen gas right at the surface of the oxide," says Mostafa. So being able to predict the dopants that belong to each type is the essential trick to making an effective barrier.

The team's findings suggest two potential strategies, one aimed at minimizing hydrogen penetration and one at maximizing the ejection of hydrogen atoms that do get in.

The blocking strategy is "to target the bottom of the valley" by incorporating the right amount of an element, such as chromium, that produces this effect. The other strategy is based on different elements, including niobium, that propel hydrogen out of the oxide surface and protect the underlying zirconium alloy.

The doping could be accomplished by incorporating a small amount of the dopant metal into the initial zirconium alloy matrix, so that this in turn gets incorporated into the oxidation layer that naturally forms on the metal, the team says.

The team stresses that what they found is likely to be a general approach that can be applied to all kinds of alloys that form oxidation layers on their surfaces, as most do. Their approach could lead to improvements in longevity for alloys used in fossil fuel plants, bridges, pipelines, fuel cells, and many other applications.

"Any place you have metals exposed to high temperatures and water," Yildiz says -- for example on equipment used in oil and gas extraction -- is a potential situation where this work might be applicable.
-end-
The work was supported by the Consortium for Advanced Simulation of Light Water Reactors, funded by the U.S. Department of Energy, and computational support was provided by the U.S. National Science Foundation.

Massachusetts Institute of Technology

Related Hydrogen Articles:

Paving the way for hydrogen fuel cells
The hype around hydrogen fuel cells has died down, but scientists have continued to pursue new technologies that could enable such devices to gain a firmer foothold.
Keeping the hydrogen coming
A coating of molybdenum improves the efficiency of catalysts for producing hydrogen.
Hydrogen bonds directly detected for the first time
For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope.
Argon is not the 'dope' for metallic hydrogen
Hydrogen is both the simplest and the most-abundant element in the universe, so studying it can teach scientists about the essence of matter.
Metallic hydrogen, once theory, becomes reality
Nearly a century after it was theorized, Harvard scientists have succeeded in creating metallic hydrogen.
From theory to reality: The creation of metallic hydrogen
For more than 80 years, it has been predicted that hydrogen will adopt metallic properties under certain conditions, and now researchers have successfully demonstrated this phenomenon.
Artificial leaf goes more efficient for hydrogen generation
A new study, affiliated with Ulsan National Institute of Science and Technology has introduced a new artificial leaf that generates hydrogen, using the power of the Sun to mimic underwater photosynthesis.
Hydrogen from sunlight -- but as a dark reaction
The storage of photogenerated electric energy and its release on demand are still among the main obstacles in artificial photosynthesis.
New process produces hydrogen at much lower temperature
Waseda University researchers have developed a new method for producing hydrogen, which is fast, irreversible, and takes place at much lower temperature using less energy.
Hydrogen in your pocket? New plastic for carrying and storing hydrogen
A Waseda University research group has developed a polymer which can store hydrogen in a light, compact and flexible sheet, and is safe to touch even when filled with hydrogen gas.

Related Hydrogen Reading:

The Magic of Hydrogen Peroxide
by Emily Thacker (Author)

An Ounce of Hydrogen Peroxide is Worth a Pound of Cure Hydrogen peroxide is trusted by every hospital and emergency room in the country for its remarkable ability to kill deadly germs like E. coli and the swine flu virus. In fact, it has attracted so much interest from doctors that over 6000 articles about it have appeared in scientific publications around the world. Research has discovered that hydrogen peroxide enables your immune system to function properly and fight infection and disease. Doctors have found it can shrink tumors and treat allergies, Alzheimer’s, asthma, clogged arteries,... View Details


Hydrogen: The Essential Element
by John S. Rigden (Author)

Seduced by simplicity, physicists find themselves endlessly fascinated by hydrogen, the simplest of atoms. Hydrogen has shocked, it has surprised, it has embarrassed, it has humbled--and again and again it has guided physicists to the edge of new vistas where the promise of basic understanding and momentous insights beckoned. The allure of hydrogen, crucial to life and critical to scientific discovery, is at the center of this book, which tells a story that begins with the big bang and continues to unfold today.

In this biography of hydrogen, John Rigden shows how this singular... View Details


2014 True Power of Hydrogen Peroxide, Miracle Path To Wellness - Mary Wright, goes beyond One Minute Cure
by Mary Wright (Author)

The 2014 Publication the True Power of Hydrogen Peroxide, Miracle Path To Wellness (Retail $27.95) is an extraordinary book unlike any prior book on the topic of Hydrogen Peroxide therapy and oxygenation. Well documented but also easy to read, the author gives step-by-step instructions and guidelines to personalize your health and wellness protocol specifically for you for internal and extra body health and wellness, plus the many ways to use hydrogen peroxide in your life. It also warns of ways not to use hydrogen peroxide, something you do not find in other books. Yet the book does not stop... View Details


The Hydrogen Sonata (Culture)
by Iain M. Banks (Author)

The New York Times bestselling Culture novel...
The Scavenger species are circling. It is, truly, provably, the End Days for the Gzilt civilization.

An ancient people, organized on military principles and yet almost perversely peaceful, the Gzilt helped set up the Culture ten thousand years earlier and were very nearly one of its founding societies, deciding not to join only at the last moment. Now they've made the collective decision to follow the well-trodden path of millions of other civilizations; they are going to Sublime, elevating themselves to a new and almost... View Details


Dark Sun: The Making of the Hydrogen Bomb
by Richard Rhodes (Author)

Here, for the first time, in a brilliant, panoramic portrait by the Pulitzer Prize-winning author of The Making of the Atomic Bomb, is the definitive, often shocking story of the politics and the science behind the development of the hydrogen bomb and the birth of the Cold War.

Based on secret files in the United States and the former Soviet Union, this monumental work of history discloses how and why the United States decided to create the bomb that would dominate world politics for more than forty years. View Details


Hydrogen Peroxide and Aloe Vera Plus Other Home Remedies
by Conrad LeBeau (Author), Conrad LeBeau (Editor)

Home remedies using hydrogen peroxide, testimonials, case reports and clinical research on preventing and treating over 50 health conditions. Discusses the use of hydrogen peroxide, ozone, castor oil, raw honey, aloe vera, blackstrap molasses, coral calcium, grapefruit seeds, limewater, milk of magnesia, birch water, flaxseed oil, brazil nuts, garlic, oregano, cayenne, wakame and lemons. Includes low cost, non-toxic treatment options for cancer and a chapter on 10 ways to treat infections at home. View Details


Hydrogen Peroxide: Medical Miracle
by William Campbell Douglass II (Author)

'Less is more' when it comes to the small molecule hydrogen peroxide - H2O2 - and the role it plays in maintaining health and fighting diseases. Discover how the miraculous healing agent works, why it's a 'natural' and 'bio-identical' substance, and it's multiple medical applications. View Details


Hydrogen Peroxide Miracles & Cures Handbook: Benefits, Uses & Medical Therapy with Hydrogen Peroxide
by Greg Cook (Author)

The ULTIMATE Guide To Hydrogen Peroxide - Everything You Need To Know! Are You Ready To Improve Your Life With Hydrogen Peroxide? If So You've Come To The Right Place... * * *LIMITED TIME OFFER! 50% OFF!* * * Hydrogen peroxide, whose chemical formula is H2O2, is a popular disinfectant commonly used in clinics and hospitals. Clinical personnel use it to cleanse and disinfect wounds. However, there is more to H2O2 than just its popular use. In this book, you’ll learn more about this chemical compound and how it can change your life! Here's A Preview Of What You'll Learn... ... View Details


101 Home Uses of Hydrogen Peroxide: The Clean Green Home Revolution
by Mundt Becky (Author)

"The Clean Green Home Revolution - 101 Home Uses of Hydrogen Peroxide" is a comprehensive guide to home, garden, spa and personal care uses of hydrogen peroxide from the editor and publisher of FoodGradeH2O2.com. Replace toxic home cleaning products with safe effective hydrogen peroxide! Improve indoor air quality, disinfect and clean without dangerous chemicals. This book will give you all the specific information you need to change the way you keep your house, your garden and even yourself clean and healthy. All natural, non-toxic and 100 percent environmentally safe - hydrogen peroxide... View Details


101 Home Uses of Hydrogen Peroxide: The Clean Green Home Revolution (Natural Miracles) (Volume 1)
by Becky Mundt (Author)

This all new 5th edition of "The Clean Green Home Revolution - 101 Home Uses of Hydrogen Peroxide" is a comprehensive guide to home, garden, spa and personal care uses of hydrogen peroxide from the editor and publisher of FoodGradeH2O2.com.

Replace Toxic Home Cleaning Products with Safe Effective Hydrogen Peroxide - This book will show you how!

Improve indoor air quality, disinfect and clean without dangerous chemicals. 101 Home Uses of Hydrogen Peroxide will give you all the specific information you need to change the way you keep your house, your garden and even... View Details

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Simple Solutions
Sometimes, the best solutions to complex problems are simple. But simple doesn't always mean easy. This hour, TED speakers describe the innovation and hard work that goes into achieving simplicity. Guests include designer Mileha Soneji, chef Sam Kass, sleep researcher Wendy Troxel, public health advocate Myriam Sidibe, and engineer Amos Winter.
Now Playing: Science for the People

#448 Pavlov (Rebroadcast)
This week, we're learning about the life and work of a groundbreaking physiologist whose work on learning and instinct is familiar worldwide, and almost universally misunderstood. We'll spend the hour with Daniel Todes, Ph.D, Professor of History of Medicine at The Johns Hopkins University, discussing his book "Ivan Pavlov: A Russian Life in Science."