Nav: Home

Hydride-ion conduction makes its first appearance

March 29, 2016

Ionic transport has been studied extensively over the years for energy devices such as fuel cells and batteries using Li+, H+, Ag+, Cu+, F-, and O2-. Yet as Genki Kobayashi and Ryoji Kanno point out in a recent report, hydride ions (H-) may be particularly useful for high-energy-density storage and conversion devices. Using an oxyhydride solid state cell they have now demonstrated pure H- conduction in an oxide for the first time.

Metal hydrides tend to have an inflexible lattice, which makes H- transport difficult, so the researchers turned to oxyhydrides where oxygen and hydrogen share the same lattice sites. Another challenge is the high electron-donating properties of H-, which means that the electrons will dissociate from the H- to produce protons and electrons, giving rise to electron rather than hydride-ion transport. As a result the team sought a system containing cations that were more electron-donating than the H-.

Kobayashi and Kanno collaborated with colleagues from the Institute for Molecular Science, Japan Science and Technology Agency, Tokyo Institute of Technology, Kyoto University and High Energy Accelerator Research Organization in Japan. They examined how the structure of their oxyhydride compounds changed with composition and synthesis conditions (Fig. 1). They also studied characteristics of the electronic structure that suggested an ionic Li-H bond in the compound, namely the existence of H- in the oxides.

They then used La2LiHO3 in an orthorhombic structural phase (o- La2LiHO3) as an electrolyte in a cell with titanium anode and titanium hydride cathodes (Fig. 2). Phase changes at the electrodes by the discharge were consistent with a Ti-H phase diagram suggesting hydride-ion transport. They conclude: "The present success in the construction of an all-solid-state electrochemical cell exhibiting H- diffusion confirms not only the capability of the oxyhydride to act as an H- solid electrolyte but also the possibility of developing electrochemical solid devices based on H- conduction."


Batteries and fuel cells

Batteries and fuel cells are electrochemical devices. In lithium ion batteries, for example, lithium ions move from a positive to a negative electrode during use, and back again during charging. They are now used ubiquitously for energy storage in mobile devices but improvements to the energy density, performance and environmental sustainability of these batteries is still sought to extend their use to other devices, such as cars. The ions move between electrodes through an electrolyte. Solid-state electrolytes have safety and stability advantages over liquids as they are less prone to leak and short circuit.

In other types of electrochemical device different types of ion move back and forth, such as positive hydrogen ions in fuel cells. The charge and size of the ions affects its transport.

Redox reactions

Ions are described by the number of additional (negative ions) or absent (positive ions) electrons in the outside or 'valence' electronic orbital. Oxygen readily accepts electrons to form doubly negative ions (O2-). As a result when an ion is oxidised it loses electrons, increasing the positivity of its oxidation state. When an ion is reduced, it accepts electrons, reducing the positivity of its electron valence state.

In batteries atoms can be oxidised to form positive ions that are attracted to the negative electrode where they are reduced or vice versa. These reduction and oxidation reactions are described as redox reactions.


Although hydride-ion conduction has not been used in batteries, there are potential advantages for using these ions. They are similar in size to oxide and fluoride ions and have strong reducing properties. The standard redox potential of H-/H2 is -2.3 V - close to Mg/Mg2+ (-2.4 V) which has already attracted interest for batteries. Hydride ion conductors may therefore be applied in energy storage or conversion devices with high energy densities.

Oxyhydrides for hydride-ion conduction

To overcome some of the challenges inhibiting hydride-ion conduction--hydride-ion diffusion in oxide crystal lattices and the high tendency for hydride-ion dissociation to electrons and protons--the researchers studied oxyhydrides that have structures similar to K2NiF4. These included La2LiHO3 (x = y = 0), Sr2LiH3O (x = 0, y = 2), La2-xSrxLiH1-xO3 (0 ? x ? 1, y = 0), and La1-xSr1+xLiH2-xO2 (0 ? x ? 1, y = 1).

They found that La2LiHO3 exists in two chemical phases--orthorhombic (o) and tetragonal (t) depending on the ratio of the starting chemicals and synthesis conditions. Studies of the conductivity of the compounds showed that the compound compositions that led to more vacancies were more conductive, indicating a relationship between vacancies and ionic diffusion. They also showed that the conductivity could be increased by increasing the number of vacancies.

Authors: Genki Kobayashi1,2, Yoyo Hinuma3, Shinji Matsuoka4, Akihiro Watanabe1,4, Muhammad Iqbal4, Masaaki Hirayama4, Masao Yonemura5, Takashi Kamiyama5, Isao Tanaka3, and Ryoji Kanno4

Title of original paper: Pure H- conduction in oxyhydrides

Journal: Science (2016)

DOI: 10.1126/science.aac9185

Affiliations: 1 Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, 2 Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 3 Department of Materials Science and Engineering, Kyoto University, 4 Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 5 Neutron Science Laboratory (KENS), Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK)


This research was supported by Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), and Grant-in-Aid for Scientific Research on Innovative Areas from the Japan Society for the Promotion of Science (JSPS).

Further information

Japan Science and Technology Agency, Public Affairs Office

Institute for Molecular Science, Public Relations Office

Tokyo Institute of Technology, Center for Public Affairs and Communications

Kyoto University, Public Affairs Office

High Energy Accelerator Research Organization, Public Relations Office

Japan Proton Accelerator Research Complex (J-PARC), Public Relations Office

National Institutes of Natural Sciences

Related Fuel Cells Articles:

Paving the way for hydrogen fuel cells
The hype around hydrogen fuel cells has died down, but scientists have continued to pursue new technologies that could enable such devices to gain a firmer foothold.
Ruthenium rules for new fuel cells
Rice University scientists have fabricated a durable catalyst for high-performance fuel cells by attaching single ruthenium atoms to graphene.
Multifunctional catalyst for poison-resistant hydrogen fuel cells
A Kyushu University-led collaboration developed a catalyst that can oxidize both hydrogen and carbon monoxide in fuel cells.
Electrocatalyst nanostructures key to improved fuel cells, electrolyzers
Purdue University scientists' simulations have unraveled the mystery of a new electrocatalyst that may solve a significant problem associated with fuel cells and electrolyzers.
Nanoalloys 10 times as effective as pure platinum in fuel cells
A new type of nanocatalyst can result in the long-awaited commercial breakthrough for fuel cell cars.
Resilient red blood cells need fuel to adapt their shape to the environment
An international research team led by Osaka University built a novel 'Catch-Load-Launch' microfluidic device to monitor the resilience of red blood cells after being held in a narrow channel for various periods of time.
Cancer immunotherapy: Revived T cells still need fuel
Drugs targeting the PD-1 pathway are often described as 'releasing the brakes' on killer T cells.
Fuel cells with PFIA-membranes
HZB scientists have teamed up with partners of 3M Company in order to explore the water management in an alternative proton exchange membrane type, called PFIA.
New class of fuel cells offer increased flexibility, lower cost
A new class of fuel cells based on a newly discovered polymer-based material could bridge the gap between the operating temperature ranges of two existing types of polymer fuel cells, a breakthrough with the potential to accelerate the commercialization of low-cost fuel cells for automotive and stationary applications.
Pancreatic cancer cells find unique fuel sources to keep from starving
Pancreatic cancer cells avert starvation in dense tumors by ordering nearby support cells to supply them with an alternative source of nutrition.

Related Fuel Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...