Nav: Home

Earth-space telescope system produces hot surprise

March 29, 2016

Astronomers using an orbiting radio telescope in conjunction with four ground-based radio telescopes have achieved the highest resolution, or ability to discern fine detail, of any astronomical observation ever made. Their achievement produced a pair of scientific surprises that promise to advance the understanding of quasars, supermassive black holes at the cores of galaxies.

The scientists combined the Russian RadioAstron satellite with the ground-based telescopes to produce a virtual radio telescope more than 100,000 miles across. They pointed this system at a quasar called 3C 273, more than 2 billion light-years from Earth. Quasars like 3C 273 propel huge jets of material outward at speeds nearly that of light. These powerful jets emit radio waves.

Just how bright such emission could be, however, was thought to be limited by physical processes. That limit, scientists thought, was about 100 billion degrees. The researchers were surprised when their Earth-space system revealed a temperature hotter then 10 trillion degrees.

"Only this space-Earth system could reveal this temperature, and now we have to figure out how that environment can reach such temperatures," said Yuri Kovalev, the RadioAstron project scientist. "This result is a significant challenge to our current understanding of quasar jets," he added.

The observations also showed, for the first time, substructure caused by scattering of the radio waves by the tenuous interstellar material in our own Milky Way Galaxy.

"This is like looking through the hot, turbulent air above a candle flame," said Michael Johnson, of the Harvard-Smithsonian Center for Astrophysics. "We had never been able to see such distortion of an extragalactic object before," he added.

"The amazing resolution we get from RadioAstron working with the ground-based telescopes gives us a powerful new tool to explore not only the extreme physics near the distant supermassive black holes, but also the diffuse material in our home Galaxy," Johnson said.

The RadioAstron satellite was combined with the Green Bank Telescope in West Virginia, The Very Large Array in New Mexico, the Effelsberg Telescope in Germany, and the Arecibo Observatory in Puerto Rico. Signals received by the orbiting radio telescope were transmitted to an antenna in Green Bank where they were recorded and then sent over the internet to Russia where they were combined with the data received by the ground-based radio telescopes to form the high resolution image of 3C 273.

The astronomers reported their results in the Astrophysical Journal Letters.

In 1963, astronomer Maarten Schmidt of Caltech recognized that a visible-light spectrum of 3C 273 indicated its great distance, resolving what had been a mystery about quasars. His discovery showed that the objects are emitting tremendous amounts of energy and led to the current model of powerful emission driven by the tremendous gravitational energy of a supermassive black hole.
-end-
The RadioAstron project is led by the Astro Space Center of the Lebedev Physical Institute of the Russian Academy of Sciences and the Lavochkin Scientific and Production Association under a contract with the Russian Federal Space Agency, in collaboration with partner organizations in Russia and other countries. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

National Radio Astronomy Observatory

Related Quasars Articles:

Discovered: Fast-growing galaxies from early universe
A team of astronomers including Carnegie's Eduardo BaƱados and led by Roberto Decarli of the Max Planck Institute for Astronomy has discovered a new kind of galaxy which, although extremely old -- formed less than a billion years after the Big Bang -- creates stars more than a hundred times faster than our own Milky Way.
Ripples in the cosmic web
A team of astronomers has made the first measurements of small-scale ripples in primeval hydrogen gas using rare double quasars.
Why the discovery of a bevy of quasars will boost efforts to understand galaxies' origins
Three astrophysicists, including a member of the team that recently announced a huge find of extremely distant quasars, explain how these
A new look at the nature of dark matter
A new study suggests that the gravitational waves detected by the LIGO experiment must have come from black holes generated during the collapse of stars, and not in the earliest phases of the Universe.
How fast is the universe expanding? Quasars provide an answer
The H0LiCOW collaboration, a cosmology project led by EPFL and Max Planck Institute and regrouping several research organizations in the world has made a new measurement of the Hubble constant, which indicates how fast the universe is expanding.
Do extremely reddened quasars extinguish star formation?
New research, led by Frederick Hamann, a professor at the Department of Physics and Astronomy at University of California, Riverside, describes the discovery of a unique new population of extremely red quasars.
ESO's VLT detects unexpected giant glowing halos around distant quasars
An international team of astronomers has discovered glowing gas clouds surrounding distant quasars.
Earth-space telescope system produces hot surprise
Combining an orbiting radio telescope with telescopes on Earth made a system capable of the highest resolution of any observation ever made in astronomy.
New research shows quasars slowed star formation
Research led by Johns Hopkins University scientists has found new persuasive evidence that could help solve a longstanding mystery in astrophysics: why did the pace of star formation in the universe slow down some 11 billion years ago?
Record-breaking ultraviolet winds discovered near black hole
The fastest winds at ultraviolet wavelengths have been discovered near a supermassive black hole.

Related Quasars Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.