Nav: Home

Beach replenishment may have 'far reaching' impacts on ecosystems

March 29, 2016

UC San Diego biologists who examined the biological impact of replenishing eroded beaches with offshore sand found that such beach replenishment efforts could have long-term negative impacts on coastal ecosystems.

The scientists, who studied the effects of beach replenishment efforts on the abundance of intertidal invertebrates at eight different beaches in San Diego County, discovered that the movement of sand onto those beaches resulted in a more than twofold reduction in the abundance of intertidal invertebrates after 15 months.

"We found rather long lasting declines in invertebrate abundances due to replenishment," said Joshua Kohn, a professor of biology who headed the study, which was published this week in the journal Estuarine, Coastal and Shelf Science. "These invertebrates are what shorebirds eat when they poke their bills in the sand. They are also food for small inshore fish."

"Such reductions may have far reaching consequences for sandy beach ecosystems," the researchers warn in their paper, "as community declines can reduce prey availability for shorebirds and fish."

While other researchers had previously looked at the impact of beach replenishment on certain taxa of invertebrates at specific beaches, the UC San Diego study is unusual in that it examined the impact on the total invertebrate community across eight different beaches in San Diego County from Oceanside south to Imperial Beach. The UC San Diego biologists were also able compare their results at each beach where sand was pumped onshore to an untreated section of the beach, which served as a control.

The opportunity to conduct the study came about in the fall of 2012 when the San Diego Association of Governments, or SANDAG, and the U.S. Army Corps of Engineers embarked on an ambitious project to replenish eight beaches with a total of 1.76 million cubic meters of sand. Only portions of each beach were replenished so that other sections of the beach could be used for foraging birds and fish.

"This provided the strongest experimental system yet to assess the effects of replenishment," said Kohn. "With replenished and control sections of each beach, we could assess both the general effects of replenishment as well as variation among beaches in their invertebrate communities and responses to replenishment."

To conduct their study, Kohn and the other co-authors of the study, Heather Henter, a biologist and academic coordinator of the Natural Reserve System, and Tyler Wooldridge, a graduate student, enlisted the help of undergraduates in UC San Diego's Environmental Systems program to sample the replenished and control sections of each of the eight beaches starting in the fall of 2012. The students then resampled those sections four months later, 12 months later and 15 months after the initial replenishment.

The eight beaches sampled from north to south were South Oceanside Beach, North Carlsbad Beach, South Carlsbad Beach, Batiquitos Beach, Moonlight Beach, Cardiff State Beach, Fletcher Cove and Imperial Beach.

"When people look at the sandy beach it looks like nothing could possible live there," said Henter. "It looks devoid of life. But when you actually dig down into the sand, there are a lot of creatures. This seems odd because there is no primary production on the beach. No plants grow there so there should be nothing to eat. But the sandy beach animals feed on seaweed and detritus cast ashore and plankton that washes in from the ocean."

"In San Diego there are multiple species of tiny worms called polychaetes," she added. "Little bean clams, Donax gouldii, are sometimes on our beaches by the thousands and there are various crustaceans such as amphipods (sandhoppers) and mole crabs, Emerita analoga, that stick their feathery antennae up above the sand to filter food out of the waves in the swash zone."

The researchers found that nearly all taxa showed major declines in their abundances shortly after beach replenishment, but that populations of sandhoppers and bean clams recovered within one year. On some beaches, populations of mole crabs bloomed four months after replenishment and were even more numerous for a short time than on control portions of beaches, but subsequently declined. Polychaete worms, the most common invertebrates at the beach, meanwhile, showed sharp declines at all of the beaches that continued to the end of the study.

"There's a lot we don't yet know about the effect of sand replenishment on the community of organisms that live in the sandy beach, and the animals that depend on them," said Henter. "In our study, some species seemed to increase in abundance after replenishment, others decreased, but this was really variable."

Because sandy beaches make up two-thirds of the world's shorelines and many other beach communities around the nation and world employ costly replenishment efforts to combat erosion at economically important beaches, the UC San Diego biologists believe it's critical to continue studies of the ecological impact of beach replenishment.

"There are large gaps in our knowledge," said Wooldridge. "For instance, how long will the effects we observed last? What is the effect of reduced invertebrate abundance on bird and fish populations? Another key question is how frequent and widespread should efforts to replenish beaches be? Are there times of the year when it is more or less disruptive for the animals that live in the sandy beach? To answer those questions, we need more studies."
-end-
The UC San Diego study was supported by grants from the National Science Foundation and the Agouron Foundation.

University of California - San Diego

Related Invertebrates Articles:

Climate change impacts Antarctic biodiversity habitat
Ice-free areas of Antarctica -- home to more than 99 percent of the continent's terrestrial plants and animals -- could expand by more than 17,000 km2 by the end of this century, a study published today in Nature reveals.
Conservation and nameless earthworms: Assessors in the dark?
Earthworms help to ensure that ecosystems thrive. However, people find it hard to relate to animals that are known by their scientific names only.
Ocean warming to cancel increased CO2-driven productivity
University of Adelaide researchers have constructed a marine food web to show how climate change could affect our future fish supplies and marine biodiversity.
What global climate change may mean for leaf litter in streams and rivers
Carbon emissions from streams and rivers are expected to increase as warmer water temperatures stimulate faster rates of organic matter breakdown.
Hidden diversity: 3 new species of land flatworms from the Brazilian Araucaria forest
A huge invertebrate diversity is hidden on the forest floor in the Araucaria moist forest.
The fly reveals a new signal involved in limb growth
Published in Nature Communications, the study paves the way to research into the function of this pathway in vertebrate development and its possible involvement in human congenital diseases.
Eat and be eaten: Invasive scavengers in Hawaii alter island nutrient cycle
Researchers from the University of Georgia have found that invasive species on Hawaii Island may be especially successful invaders because they are formidable scavengers of carcasses of other animals and after death, a nutrient resource for other invasive scavengers.
Assassins on the rise: A new species and a new tribe of endemic South African robber flies
Discovery of a new species of assassin flies led to the redescription of its genus.
World of viruses uncovered
A groundbreaking study of the virosphere of the most populous animals has uncovered 1,445 viruses, revealing people have only scratched the surface of the world of viruses -- but it is likely that only a few cause disease.
Unfamiliar bloodline: New family for an earthworm genus with exclusive circulatory system
New earthworm family has been established for a South African indigenous genus of 21 species.

Related Invertebrates Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...