Nav: Home

New tool mines whole-exome sequencing data to match cancer with best drug

March 29, 2016

A University of Colorado Cancer study published today in the Journal of the American Medical Informatics Association (JAMIA) describes a new tool that interprets the raw data of whole exome tumor sequencing and then matches the cancer's unique genetics to FDA-approved targeted treatments.

"Whole exome sequencing is becoming more available to patients and this tool will help them distill the sequencing data to candidate genes and link them with therapies," says Aik Choon Tan, PhD, investigator at the CU Cancer Center, associate professor of Bioinformatics at the CU School of Medicine, and the paper's senior author.

The tool, called Integrating Molecular Profiles with Actionable Therapeutics, or IMPACT, starts with the data generated by whole-exome sequencing - a string of A, T, C and G hundreds of millions of letters long. IMPACT then maps this string onto the human genome to partition the raw data into segments that correspond to the body's approximately 20,000 genes. The tool then compares the code of these genes to "normal" gene patterns to discover which genes differ in ways that could guide the development of cancer. (In a second step, IMPACT also counts the number of gene repeats, which when adjusted higher or lower can also drive the growth of cancer.)

"Now we have a list of candidate genes," Tan says. "The next step is to link candidate genes with therapeutics."

IMPACT does this by mining publicly available data including that of the NCI-MATCH clinical trial and the database at to discover which FDA-approved therapies target these candidate genes.

The Tan lab tested the tool by inputting whole-exome sequencing data for patients known to have EGFR-mutated non-small cell lung cancer from The Cancer Genome Atlas. Sure enough, IMPACT successfully identified the gene EGFR as a driving mutation and recommended FDA-approved EGFR inhibitors.

In collaboration with the laboratory of CU Cancer Center investigator William A. Robinson, MD, PhD, Tan and colleagues then used the tool to retrospectively analyze a series of exome-sequences from patients diagnosed with melanoma, validating the tool's ability to discover a patient's activating mutation and pair it with useful treatment.

"For example, a patient was found to have a BRAF mutation and was put on a clinical trial of the drug vemurafenib, which targets BRAF alterations," Tan says.

The drug controlled the patient's tumor. However, two years later the tumor relapsed. At this point, the group resequenced the tumor and found that in addition to BRAF mutation, the patient had developed NRAS mutation.

"Taking tumor samples over time, we could see the cancer cell figuring out how to become resistant," Tan says.

However, drugs also exist to disrupt cells that depend on NRAS mutation. The combination of dabrafenib (for BRAF) and trametinib (for NRAS) controlled the patient's melanoma for another two years. When the cancer relapsed, it was again resequenced and evaluated using IMPACT. Analysis showed loss of the gene CDKN2a, a known tumor suppressor gene that keeps in check cells that have learned to speed through the process of replication. Currently there are no inhibitors of the CDK family of genes approved by the FDA to treat melanoma. However, the drug palbocicilib recently earned FDA approval to treat a subset of breast cancers.

"We are trying to see if we can treat this melanoma with a CDK inhibitor. Will this drug overcome the cancer's resistance to the previous combination?" Tan says.

The IMPACT tool works in four steps: 1) identify possible cancer-causing mutations; 2) identify possible cancer-causing gene copy number alterations; 3) match cancer's genetic causes with the most likely therapeutic controls; 4) evaluate the ongoing evolution of cancer to continue matching controls with emerging causes.

"We hope that IMPACT proves to be an important tool in empowering the shift toward precision medicine," Tan says.

University of Colorado Anschutz Medical Campus

Related Cancer Articles:

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
More Cancer News and Cancer Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab