Nav: Home

Case comprehensive cancer center analyzes brain tumor data, doubles known risk factors for glioma

March 29, 2017

A massive new study involving blood samples from over 30,000 individuals has identified 13 new genetic risk factors for glioma, the most common type of malignant brain tumor in adults. The study, published in Nature Genetics, reveals specific differences in a person's DNA that increase susceptibility to glioma tumors, and for the first time allows doctors to distinguish between a person's risk of developing tumor subtypes including glioblastoma and non-glioblastoma. Together malignant brain tumors cause an estimated 13,000 deaths in the United States annually.

"Because of the large sample size used in this study, for the first time we were able to assess if genetic risk was different for glioblastoma versus non-glioblastoma. Indeed their genetic risk profiles are different," said Jill Barnholtz-Sloan, PhD, Sally S. Morley Designated Professor in Brain Tumor Research at the Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine. Barnholtz-Sloan served as local primary investigator in the study and helped lead the data management and data analysis alongside Case Western Reserve University School of Medicine Doctoral Student, Quinn Ostrom, MA, MPH, and Biostatistician, Yanwen Chen, PhD, MS.

The enormous study credits 63 authors across more than 20 institutions, including collaborators in Sweden, Denmark, United Kingdom, Germany, Canada, and Israel. Said Barnholtz-Sloan, "Gliomas, while the most common type of malignant brain tumor in adults, are very rare, hence multi-site collaborations are necessary in order to have scientifically valid sample sizes."

In the new study, Barnholtz-Sloan and the researchers provide a meta-analysis of multiple published genome-wide association studies, or GWASs, increasingly popular research tools that search DNA sequence data for regions associated with disease risk. The studies are exceptionally powerful, and able to pinpoint specific DNA sequence molecules, say a G, C, T, or A, that are altered in people with a particular disease as compared to people without that disease. Previous GWASs had identified 13 specific locations in DNA that increase a person's risk for developing glioma. The new study doubled this number, identifying an additional 13 novel locations--five for glioblastoma, and eight for non-glioblastoma.

Said Barnholtz-Sloan, "A meta-analysis was needed because we wanted to analyze data from the most studies possible." In total, the team analyzed data from 12,496 people with gliomas (6,191 glioblastomas and 5,819 non-glioblastomas) and 18,190 people without gliomas.

The newly identified genetic risk factors could help distinguish patients most at risk for developing each kind of glioma. Each tumor subtype is associated with a different prognosis, with the most common, glioblastoma, associated with a median survival rate of only 12-14 months, according to the American Brain Tumor Association. With information from the new study, doctors are better equipped to diagnose high-risk patients early, which could ultimately improve prognosis.
-end-
Funding information for this study is available from Nature Genetics.

For more information about Case Western Reserve University School of Medicine, please visit: http://case.edu/medicine.

Case Western Reserve University

Related Dna Articles:

In one direction or the other: That is how DNA is unwound
DNA is like a book, it needs to be opened to be read.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
Switching DNA and RNA on and off
DNA and RNA are naturally polarised molecules. Scientists believe that these molecules have an in-built polarity that can be reoriented or reversed fully or in part under an electric field.
More Dna News and Dna Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.