Case comprehensive cancer center analyzes brain tumor data, doubles known risk factors for glioma

March 29, 2017

A massive new study involving blood samples from over 30,000 individuals has identified 13 new genetic risk factors for glioma, the most common type of malignant brain tumor in adults. The study, published in Nature Genetics, reveals specific differences in a person's DNA that increase susceptibility to glioma tumors, and for the first time allows doctors to distinguish between a person's risk of developing tumor subtypes including glioblastoma and non-glioblastoma. Together malignant brain tumors cause an estimated 13,000 deaths in the United States annually.

"Because of the large sample size used in this study, for the first time we were able to assess if genetic risk was different for glioblastoma versus non-glioblastoma. Indeed their genetic risk profiles are different," said Jill Barnholtz-Sloan, PhD, Sally S. Morley Designated Professor in Brain Tumor Research at the Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine. Barnholtz-Sloan served as local primary investigator in the study and helped lead the data management and data analysis alongside Case Western Reserve University School of Medicine Doctoral Student, Quinn Ostrom, MA, MPH, and Biostatistician, Yanwen Chen, PhD, MS.

The enormous study credits 63 authors across more than 20 institutions, including collaborators in Sweden, Denmark, United Kingdom, Germany, Canada, and Israel. Said Barnholtz-Sloan, "Gliomas, while the most common type of malignant brain tumor in adults, are very rare, hence multi-site collaborations are necessary in order to have scientifically valid sample sizes."

In the new study, Barnholtz-Sloan and the researchers provide a meta-analysis of multiple published genome-wide association studies, or GWASs, increasingly popular research tools that search DNA sequence data for regions associated with disease risk. The studies are exceptionally powerful, and able to pinpoint specific DNA sequence molecules, say a G, C, T, or A, that are altered in people with a particular disease as compared to people without that disease. Previous GWASs had identified 13 specific locations in DNA that increase a person's risk for developing glioma. The new study doubled this number, identifying an additional 13 novel locations--five for glioblastoma, and eight for non-glioblastoma.

Said Barnholtz-Sloan, "A meta-analysis was needed because we wanted to analyze data from the most studies possible." In total, the team analyzed data from 12,496 people with gliomas (6,191 glioblastomas and 5,819 non-glioblastomas) and 18,190 people without gliomas.

The newly identified genetic risk factors could help distinguish patients most at risk for developing each kind of glioma. Each tumor subtype is associated with a different prognosis, with the most common, glioblastoma, associated with a median survival rate of only 12-14 months, according to the American Brain Tumor Association. With information from the new study, doctors are better equipped to diagnose high-risk patients early, which could ultimately improve prognosis.
-end-
Funding information for this study is available from Nature Genetics.

For more information about Case Western Reserve University School of Medicine, please visit: http://case.edu/medicine.

Case Western Reserve University

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.