Nav: Home

Case comprehensive cancer center analyzes brain tumor data, doubles known risk factors for glioma

March 29, 2017

A massive new study involving blood samples from over 30,000 individuals has identified 13 new genetic risk factors for glioma, the most common type of malignant brain tumor in adults. The study, published in Nature Genetics, reveals specific differences in a person's DNA that increase susceptibility to glioma tumors, and for the first time allows doctors to distinguish between a person's risk of developing tumor subtypes including glioblastoma and non-glioblastoma. Together malignant brain tumors cause an estimated 13,000 deaths in the United States annually.

"Because of the large sample size used in this study, for the first time we were able to assess if genetic risk was different for glioblastoma versus non-glioblastoma. Indeed their genetic risk profiles are different," said Jill Barnholtz-Sloan, PhD, Sally S. Morley Designated Professor in Brain Tumor Research at the Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine. Barnholtz-Sloan served as local primary investigator in the study and helped lead the data management and data analysis alongside Case Western Reserve University School of Medicine Doctoral Student, Quinn Ostrom, MA, MPH, and Biostatistician, Yanwen Chen, PhD, MS.

The enormous study credits 63 authors across more than 20 institutions, including collaborators in Sweden, Denmark, United Kingdom, Germany, Canada, and Israel. Said Barnholtz-Sloan, "Gliomas, while the most common type of malignant brain tumor in adults, are very rare, hence multi-site collaborations are necessary in order to have scientifically valid sample sizes."

In the new study, Barnholtz-Sloan and the researchers provide a meta-analysis of multiple published genome-wide association studies, or GWASs, increasingly popular research tools that search DNA sequence data for regions associated with disease risk. The studies are exceptionally powerful, and able to pinpoint specific DNA sequence molecules, say a G, C, T, or A, that are altered in people with a particular disease as compared to people without that disease. Previous GWASs had identified 13 specific locations in DNA that increase a person's risk for developing glioma. The new study doubled this number, identifying an additional 13 novel locations--five for glioblastoma, and eight for non-glioblastoma.

Said Barnholtz-Sloan, "A meta-analysis was needed because we wanted to analyze data from the most studies possible." In total, the team analyzed data from 12,496 people with gliomas (6,191 glioblastomas and 5,819 non-glioblastomas) and 18,190 people without gliomas.

The newly identified genetic risk factors could help distinguish patients most at risk for developing each kind of glioma. Each tumor subtype is associated with a different prognosis, with the most common, glioblastoma, associated with a median survival rate of only 12-14 months, according to the American Brain Tumor Association. With information from the new study, doctors are better equipped to diagnose high-risk patients early, which could ultimately improve prognosis.
-end-
Funding information for this study is available from Nature Genetics.

For more information about Case Western Reserve University School of Medicine, please visit: http://case.edu/medicine.

Case Western Reserve University

Related Dna Articles:

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.