Nav: Home

Atomic 're-packing' behind metallic glass mystery

March 29, 2017

An international collaboration involving Hokkaido University's high-voltage electron microscope has solved a puzzle about the atomic structure of metallic glasses that has baffled scientists for four decades.

Unlike crystalline alloys, atoms in metallic glasses are randomly organized, a structure called amorphous. This makes them stronger, more flexible and resistant to corrosion. Due to these excellent physical properties, they are used in sports equipment, medical devices and electricity transformers. But improving their properties requires a better understanding of their atomic structure.

In 1976, researchers used a technique, called differential scanning calorimetry, to measure the difference in the amount of heat required to increase the temperature of metallic glass alloys made of palladium, nickel and phosphorous (Pd-Ni-P). As they heated the Pd-Ni-P alloys, they found a thermodynamic inconsistency in the resulting curve that they couldn't properly explain, but it must have had to do with their structures.

Now, forty years later, an international research consortium led by City University of Hong Kong developed a method that combined various measuring techniques, allowing them to directly correlate changes in the structure of Pd-Ni-P metallic glass to temperature changes.

High-energy synchrotron X-ray diffraction was carried out while constant heating was simultaneously applied to Pd-Ni-P metallic glass at Argonne National Laboratory in the US. Separately, small-angle neutron scattering was performed at the OPAL reactor at the Australian Nuclear Science and Technology Organization. This was complemented by obtaining high-resolution images and electron diffraction patterns of the material's atomic structure using Hokkaido University's high voltage electron microscope.

The combined measurements revealed that Pd-Ni-P metallic glass has a hidden amorphous phase within a certain temperature range and the thermodynamic inconsistency is the consequence of a phase transition. "The phase transition was found to involve the changes in how atom clusters were packed together. The atomic structure underwent significant changes over the medium-range length scales as large as 18Å," explains Dr. Tamaki Shibayama of Hokkaido University.

His collaborator Dr. Seiichi Watanabe added "This newly verified property appears to be linked to some metals' ability to form glass, which could allow us to manipulate their structures to develop larger and stronger novel materials."

This research was initiated as part of Hokkaido University's "Top-Collaboration Support Project."
-end-


Hokkaido University

Related Metallic Glass Articles:

Nature: 3-D-printing of glass now possible
3-D-printing allows extremely small and complex structures to be made even in small series.
Atomic 're-packing' behind metallic glass mystery
A new method uncovers a four-decade mystery about metallic glass that could allow researchers to fine-tune its properties to develop new materials.
Argon is not the 'dope' for metallic hydrogen
Hydrogen is both the simplest and the most-abundant element in the universe, so studying it can teach scientists about the essence of matter.
Machine learning method accurately predicts metallic defects
For the first time, Berkeley Lab researchers have built and trained machine learning algorithms to predict defect behavior in certain intermetallic compounds with high accuracy.
Metallic hydrogen, once theory, becomes reality
Nearly a century after it was theorized, Harvard scientists have succeeded in creating metallic hydrogen.
From theory to reality: The creation of metallic hydrogen
For more than 80 years, it has been predicted that hydrogen will adopt metallic properties under certain conditions, and now researchers have successfully demonstrated this phenomenon.
Glass's off-kilter harmonies
The transport of heat in amorphous materials is largely determined by the behavior of phonons -- quasiparticles associated with the collective vibrations of atoms.  Researchers from Georgia Tech developed a new way to calculate the heat contribution of phonons using computer simulations.
Biggest and best diamonds formed in deep mantle metallic liquid
New findings explain how the world's biggest and most-valuable diamonds formed -- from metallic liquid deep inside Earth's mantle.
Towards better metallic glasses
Researchers from the University of Bristol have used state-of-the-art computer simulation to test a theory from the 1950s that when atoms organize themselves into 3-D pentagons they suppress crystallization.
Smashing metallic cubes toughens them up
Rice University scientists smash silver micro-cubes at near supersonic speeds to see how deforming their crystalline structures can make them both stronger and tougher.

Related Metallic Glass Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#518 With Genetic Knowledge Comes the Need for Counselling
This week we delve into genetic testing - for yourself and your future children. We speak with Jane Tiller, lawyer and genetic counsellor, about genetic tests that are available to the public, and what to do with the results of these tests. And we talk with Noam Shomron, associate professor at the Sackler School of Medicine at Tel Aviv University, about technological advancements his lab has made in the genetic testing of fetuses.