Decorating single layer and bilayer graphene with useful chemical groups

March 29, 2017

Researchers at the Center for Multidimensional Carbon Materials, within the Institute for Basic Science (IBS) at Ulsan National Institute of Science and Technology disclosed a new method to add chemical groups on (that is, to "functionalize") single layer (SLG) and bilayer (BLG) graphene lying on silica/silicon. This study, recently published online in the Journal of the American Chemical Society (JACS) also suggests how decorated graphene serves as a platform to produce 2D materials with new characteristics.

A single layer of carbon atoms packed in a honeycomb lattice, called graphene, is one of the most versatile materials ever made. Its excellent heat and electricity conductivity, combined with lightness and strength, offer compelling possibilities for a variety of useful functions.

To better tune the properties of graphene, the use of functionalized graphene, that is graphene decorated with other chemical groups, has attracted extensive research interest. Such functionalized graphene could be applied to transistors, sensors, supercapacitors, drug delivery, flexible electrodes and polymer nanocomposites.

Functionalization of SLG on silica/silicon has been previously reported, but when a BLG is used, the reaction turns out to be much more complicated. BLG has different reactivity because two graphene layers adhere to each other through what are known as van der Waals forces, make BLG more chemically stable and even unreactive for some reactions. Additional fascinating aspects include the reactivity of each of the layers in BLG and other factors that can influence the reaction.

To compare and contrast reaction of SLG and BLG, the team produced flawless samples of SLG and BLG and made them more prone to react by immersing them in a mixture of sodium-potassium alloy (NaK) and a ring-shaped crown ether molecule (15-crown-5) in tetrahydrofuran (THF). This solution forms a negatively charged sodium ion (Na-), which reduces graphene by donating electrons to it, and allows SLG and BLG to react with other molecules more easily.

Using this reaction, IBS researchers demonstrated that although BLG is less reactive than SLG, both of them can be functionalized. Moreover, by using a BLG with one layer of normal carbon and another layer of carbon isotope-labeled carbon (13C), the scientists clarified that both the upper and lower layers of graphene are decorated.

The team also showed that functionalized graphene can undergo further chemical reactions with other molecules, which would hardly bind to it otherwise for the reaction conditions used. For example, graphene functionalized with 4-iodopyridine can then further react with benzyl bromide. This is a particularly interesting approach, since graphene decorated with benzyl bromide can be used for sensors and can be decorated with more chemical groups, greatly expanding the 'toolkit' of options.

"We envision that this method and platform will contribute to expanding the application range of graphene," comments Rodney S. Ruoff, corresponding author of the paper.
-end-


Institute for Basic Science

Related Graphene Articles from Brightsurf:

How to stack graphene up to four layers
IBS research team reports a novel method to grow multi-layered, single-crystalline graphene with a selected stacking order in a wafer scale.

Graphene-Adsorbate van der Waals bonding memory inspires 'smart' graphene sensors
Electric field modulation of the graphene-adsorbate interaction induces unique van der Waals (vdW) bonding which were previously assumed to be randomized by thermal energy after the electric field is turned off.

Graphene: It is all about the toppings
The way graphene interacts with other materials depends on how these materials are brought into contact with the graphene.

Discovery of graphene switch
Researchers at Japan Advanced Institute of Science and Technology (JAIST) successfully developed the special in-situ transmission electron microscope technique to measure the current-voltage curve of graphene nanoribbon (GNR) with observing the edge structure and found that the electrical conductance of narrow GNRs with a zigzag edge structure abruptly increased above the critical bias voltage, indicating that which they are expected to be applied to switching devices, which are the smallest in the world.

New 'brick' for nanotechnology: Graphene Nanomesh
Researchers at Japan advanced institute of science and technology (JAIST) successfully fabricated suspended graphene nanomesh (GNM) by using the focused helium ion beam technology.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Graphene Flagship publishes handbook of graphene manufacturing
The EU-funded research project Graphene Flagship has published a comprehensive guide explaining how to produce and process graphene and related materials (GRMs).

How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.

Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.

How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.

Read More: Graphene News and Graphene Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.