Nav: Home

11 percent of disappearing groundwater used to grow internationally traded food

March 29, 2017

Wheat, rice, sugar, cotton and maize are among the essential internationally traded crops in the global economy. To produce these crops many countries rely on irrigated agriculture that accounts for about 70 percent of global freshwater withdrawals, according to the United Nations Water program. One freshwater source is underground aquifers, some of which replenish so slowly that they are essentially a non-renewable resource.

A new study by researchers at the University College London and NASA's Goddard Institute of Space Studies in New York City shows that 11 percent of the global non-renewable groundwater drawn up for irrigation goes to produce crops that are then traded on the international market. Additionally, two-thirds of the exported crops that depend on non-renewable groundwater are produced in Pakistan (29 percent), the United States (27 percent), and India (12 percent).

"It's not just individual countries that experience groundwater depletion, but also their trade partners," said lead author Carole Dalin of the University College London. "When people consume certain imported foods, they should be aware that they can have an impact on the environment elsewhere." The results were published March 30 in Nature.

Dalin and her colleagues used trade data on countries' agricultural commodities from the United Nations Food and Agriculture Organization. They then combined it with a global hydrologic model -- validated with ground information and NASA satellite data -- to trace the sources of water used to produce 26 specific crop classes from their country of origin to their final destination. Their analysis is the first to determine which specific crops come from groundwater reservoirs that won't renew on human time-scales and where they are consumed.

"Say I'm in Japan, and I'm importing corn from the United States," said co-author Michael Puma of NASA's Goddard Institute for Space Studies and Columbia University in New York City. "It's important from Japan's perspective to know whether that corn is being produced with a sustainable source of water, because you can imagine in the long term if groundwater declines too much, the United States will have difficulty producing that crop."

Globally, 18 percent of all crops grown are traded internationally. The remaining 82 percent stays in country for the domestic market. However, the amounts of various exported crops produced using unsustainable groundwater rose significantly between 2000 and 2010. India, for example, saw its exports of groundwater-depleting crops double in that period, while Pakistan's rose by 70 percent and the United States' rose by 57 percent.

Countries that export and import these crops may be at risk in the future of losing the crops, and their profits, produced with non-renewable groundwater. Importers may need to find alternative sources, possibly at a higher cost.

Major importers of crops raised with non-renewable groundwater include the United States, Iran, Mexico, Japan, Saudi Arabia, Canada, Bangladesh, the United Kingdom, Iraq, and China, which went from a net exporter in 2000 to a net importer in 2010. Countries on both lists often export different commodities than they import.

Aquifers form when water accumulates in the ground over time, sometimes over hundreds or thousands of years. Non-renewable aquifers are those that do not accumulate rainfall fast enough to replace what is drawn out to the surface, either naturally to lakes and rivers or in this case by people via pumping. Once that groundwater is depleted, it will effectively be gone for good on the scale of a human life-time, and will no longer be available for relief during crises such as droughts, Dalin explained.

Drawdowns in aquifers worldwide have been observed over the last fifteen years by NASA's Gravity Recovery and Climate Experiment (GRACE), a pair of satellites that detect changes in Earth's gravity field to see the movement of masses such as ice sheets and, in this case, underground water.

"What's innovative about this study is it connects groundwater depletion estimates with country level data," said hydrologist Matt Rodell at NASA's Goddard Space Flight Center in Greenbelt, Maryland, who was not involved in the study. More research needs to be done which considers population growth, changing diets, climate change, the implementation of irrigation technology and policy changes to understand when these aquifers may begin to run dry, he said.

The absolute amount of water in many of these aquifers is difficult to quantify, though experts in many regions are already looking at better methods to determine how much water remains and how long it may last, Dalin said. Now and in the future, decision makers and local farmers will need to decide on a strategy for using this non-renewable water that balances the needs of short-term production versus long-term sustainability, she said.
-end-
To read the paper, visit: http://dx.doi.org/10.1038/nature21403

NASA/Goddard Space Flight Center

Related Groundwater Articles:

River-groundwater hot spot for arsenic
Naturally occurring groundwater arsenic contamination is a problem of global significance, particularly in South and Southeast Asian aquifers.
Groundwater, a threatened resource requiring sustainable management
The WEARE group at the University of Cordoba analyzed a case of aquifer recovery and concluded that supervision, governance and use of water for high value crops are some of the keys to guaranteeing sustainability of these reserves
Co-occurring contaminants may increase NC groundwater risks
Eighty-four percent of the wells sampled in the Kings Mountain Belt and the Charlotte and Milton Belts of the Piedmont region of North Carolina contained concentrations of vanadium and hexavalent chromium that exceeded health recommendations from the North Carolina Department of Health and Human Services.
Fresh groundwater flow important for coastal ecosystems
Groundwater is the largest source of freshwater, one of the world's most precious natural resources and vital for crops and drinking water.
Natural contaminant threat to drinking water from groundwater
Climate change and urbanisation are set to threaten groundwater drinking water quality, new research from UNSW Sydney shows.
Switching to solar and wind will reduce groundwater use
IIASA researchers explored optimal pathways for managing groundwater and hydropower trade-offs for different water availability conditions as solar and wind energy start to play a more prominent role in the state of California.
Groundwater studies can be tainted by 'survivor bias'
Bad wells tend to get excluded from studies on groundwater levels, a problem that could skew results everywhere monitoring is used to decide government policies and spending.
Groundwater resources in Africa resilient to climate change
Groundwater -- a vital source of water for drinking and irrigation across sub-Saharan Africa -- is resilient to climate variability and change, according to a new study led by UCL and Cardiff University.
Simple, accurate and inexpensive: A new method for exploring groundwater
Water is a vital resource for people and the environment.
Overlooked: How pumping groundwater impacts streams and vegetation
Pumping groundwater for uses like irrigation has decreased streamflow and plant water availability in the United States, according to the first large-scale simulation of surface water systems' sensitivity to water changes below ground.
More Groundwater News and Groundwater Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.