Nav: Home

11 percent of disappearing groundwater used to grow internationally traded food

March 29, 2017

Wheat, rice, sugar, cotton and maize are among the essential internationally traded crops in the global economy. To produce these crops many countries rely on irrigated agriculture that accounts for about 70 percent of global freshwater withdrawals, according to the United Nations Water program. One freshwater source is underground aquifers, some of which replenish so slowly that they are essentially a non-renewable resource.

A new study by researchers at the University College London and NASA's Goddard Institute of Space Studies in New York City shows that 11 percent of the global non-renewable groundwater drawn up for irrigation goes to produce crops that are then traded on the international market. Additionally, two-thirds of the exported crops that depend on non-renewable groundwater are produced in Pakistan (29 percent), the United States (27 percent), and India (12 percent).

"It's not just individual countries that experience groundwater depletion, but also their trade partners," said lead author Carole Dalin of the University College London. "When people consume certain imported foods, they should be aware that they can have an impact on the environment elsewhere." The results were published March 30 in Nature.

Dalin and her colleagues used trade data on countries' agricultural commodities from the United Nations Food and Agriculture Organization. They then combined it with a global hydrologic model -- validated with ground information and NASA satellite data -- to trace the sources of water used to produce 26 specific crop classes from their country of origin to their final destination. Their analysis is the first to determine which specific crops come from groundwater reservoirs that won't renew on human time-scales and where they are consumed.

"Say I'm in Japan, and I'm importing corn from the United States," said co-author Michael Puma of NASA's Goddard Institute for Space Studies and Columbia University in New York City. "It's important from Japan's perspective to know whether that corn is being produced with a sustainable source of water, because you can imagine in the long term if groundwater declines too much, the United States will have difficulty producing that crop."

Globally, 18 percent of all crops grown are traded internationally. The remaining 82 percent stays in country for the domestic market. However, the amounts of various exported crops produced using unsustainable groundwater rose significantly between 2000 and 2010. India, for example, saw its exports of groundwater-depleting crops double in that period, while Pakistan's rose by 70 percent and the United States' rose by 57 percent.

Countries that export and import these crops may be at risk in the future of losing the crops, and their profits, produced with non-renewable groundwater. Importers may need to find alternative sources, possibly at a higher cost.

Major importers of crops raised with non-renewable groundwater include the United States, Iran, Mexico, Japan, Saudi Arabia, Canada, Bangladesh, the United Kingdom, Iraq, and China, which went from a net exporter in 2000 to a net importer in 2010. Countries on both lists often export different commodities than they import.

Aquifers form when water accumulates in the ground over time, sometimes over hundreds or thousands of years. Non-renewable aquifers are those that do not accumulate rainfall fast enough to replace what is drawn out to the surface, either naturally to lakes and rivers or in this case by people via pumping. Once that groundwater is depleted, it will effectively be gone for good on the scale of a human life-time, and will no longer be available for relief during crises such as droughts, Dalin explained.

Drawdowns in aquifers worldwide have been observed over the last fifteen years by NASA's Gravity Recovery and Climate Experiment (GRACE), a pair of satellites that detect changes in Earth's gravity field to see the movement of masses such as ice sheets and, in this case, underground water.

"What's innovative about this study is it connects groundwater depletion estimates with country level data," said hydrologist Matt Rodell at NASA's Goddard Space Flight Center in Greenbelt, Maryland, who was not involved in the study. More research needs to be done which considers population growth, changing diets, climate change, the implementation of irrigation technology and policy changes to understand when these aquifers may begin to run dry, he said.

The absolute amount of water in many of these aquifers is difficult to quantify, though experts in many regions are already looking at better methods to determine how much water remains and how long it may last, Dalin said. Now and in the future, decision makers and local farmers will need to decide on a strategy for using this non-renewable water that balances the needs of short-term production versus long-term sustainability, she said.
-end-
To read the paper, visit: http://dx.doi.org/10.1038/nature21403

NASA/Goddard Space Flight Center

Related Groundwater Articles:

West Virginia groundwater not affected by fracking, but surface water is
Three years of fracking has not contaminated groundwater in northwestern West Virginia, but accidental spills of wastewater from fracked wells may pose a threat to surface water, according to a study led by scientists at Duke University.
11 percent of disappearing groundwater used to grow internationally traded food
11 percent of the global non-renewable groundwater drawn up for irrigation goes to produce crops that are then traded on the international market.
As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation
New research from the University of Hawai'i at Mānoa reveals a large part of the heavily urbanized area of Honolulu and Waikiki, Hawai'i is at risk of groundwater inundation--flooding that occurs as groundwater is lifted above the ground surface due to sea level rise.
Calculating recharge of groundwater more precisely
An international team of researchers has demonstrated that key processes in models used for the global assessment of water resources for climate change are currently missing.
Calculating recharge of groundwater more precisely
Researchers demonstrate that current models underestimate role of subsurface heterogeneity.
Deep groundwater aquifers respond rapidly to climate variability
Changes in climate can rapidly impact even the deepest freshwater aquifers according to Penn State and Columbia University hydrologists.
Anthropogenic groundwater extraction impacts climate
Anthropogenic groundwater exploitation changes soil moisture and land-atmosphere water and energy fluxes, and essentially affects the ecohydrological processes and the climate system.
Groundwater helium level could signal potential risk of earthquake
Japanese researchers have revealed a relationship between helium levels in groundwater and the amount of stress exerted on inner rock layers of the earth, found at locations near the epicenter of the 2016 Kumamoto earthquake.
Study links groundwater changes to fracking
A new study has found heightened concentrations of some common substances in drinking water near sites where hydraulic fracturing has taken place.
Colorado River Delta flows help birds, plants, groundwater
Two growing seasons after the engineered spring flood of the Colorado River Delta in 2014, the delta's birds, plants and groundwater continue to benefit, according to the latest monitoring report prepared for the International Boundary and Water Commission by a binational University of Arizona-led team.

Related Groundwater Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.