Nav: Home

New research into light particles challenges understanding of quantum theory

March 29, 2017

Scientists have discovered a new mechanism involved in the creation of paired light particles, which could have significant impact on the study of quantum physics.

Researchers at the University of East Anglia (UEA) have shown that when photons - the fundamental particles of light - are created in pairs, they can emerge from different, rather than the same, location.

The ground-breaking research could have significant implications for quantum physics, the theoretical basis of modern physics. Until now, the general assumption was that such photon pairs necessarily originate from single points in space.

Quantum entanglement - when particles are linked so closely that what affects one directly affects the other - is widely used in labs in numerous processes from quantum cryptography to quantum teleportation.

The UEA team were studying a process called spontaneous parametric down-conversion (SPDC), in which photon beams are passed through a crystal to generate entangled pairs of photons.

Prof David Andrews in UEA's School of Chemistry said: "When the emergent pairs equally share the energy of the input, this is known as degenerate down-conversion, or DDC.

"Until now, it has been assumed that such paired photons come from the same location. Now, the identification of a new delocalized mechanism shows that each photon pair can be emitted from spatially separated points, introducing a new positional uncertainty of a fundamental quantum origin."

The entanglement of the quantum states in each pair has important applications in quantum computing - theoretical computation systems that could potentially process big data problems at incredible speeds - as well as other areas of quantum physics.

The findings are also significant because they place limits on spatial resolution. Prof Andrews said: "Everything has a certain quantum 'fuzziness' to it, and photons are not the hard little bullets of light that are popularly imagined."

The study 'Nonlocalized generation of correlated photon pairs in degenerate down-conversion' by Kayn A. Forbes, Jack S. Ford, and David L. Andrews is published in the journal Physical Review Letters.
-end-


University of East Anglia

Related Quantum Computing Articles:

New method predicts spin dynamics of materials for quantum computing
Researchers at UC Santa Cruz have developed a theoretical foundation and new computational tools for predicting a material's spin dynamics, a key property for building solid-state quantum computing platforms and other applications of spintronics.
Speeding-up quantum computing using giant atomic ions
An international team of researchers have found a new way to speed up quantum computing that could pave the way for huge leaps forward in computer processing power.
Boson particles discovery provides insights for quantum computing
Researchers working on a U.S. Army project discovered a key insight for the development of quantum devices and quantum computers.
In leap for quantum computing, silicon quantum bits establish a long-distance relationship
In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.
Diversity may be key to reducing errors in quantum computing
In quantum computing, as in team building, a little diversity can help get the job done better, computer scientists have discovered.
'Valley states' in this 2D material could potentially be used for quantum computing
New research on 2-dimensional tungsten disulfide (WS2) could open the door to advances in quantum computing.
Sound of the future: A new analog to quantum computing
In a paper published in Nature Research's journal, Communications Physics, researchers in the University of Arizona Department of Materials Science and Engineering have demonstrated the possibility for acoustic waves in a classical environment to do the work of quantum information processing without the time limitations and fragility.
Imaging of exotic quantum particles as building blocks for quantum computing
Researchers have imaged an exotic quantum particle -- called a Majorana fermion -- that can be used as a building block for future qubits and eventually the realization of quantum computers.
Virginia Tech researchers lead breakthrough in quantum computing
A team of Virginia Tech chemistry and physics researchers have advanced quantum simulation by devising an algorithm that can more efficiently calculate the properties of molecules on a noisy quantum computer.
Limitation exposed in promising quantum computing material
Physicists have theorized that a new type of material, called a three-dimensional (3-D) topological insulator (TI), could be a candidate to create qubits for quantum computing due to its special properties.
More Quantum Computing News and Quantum Computing Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.