Tackling resilience: Finding order in chaos to help buffer against climate change

March 29, 2017

"Resilience" is a buzzword often used in scientific literature to describe how animals, plants and landscapes can persist under climate change. It's typically considered a good quality, suggesting that those with resilience can withstand or adapt as the climate continues to change.

But when it comes to actually figuring out what makes a species or an entire ecosystem resilient ? and how to promote that through restoration or management ? there is a lack of consensus in the scientific community.

A new paper by the University of Washington and NOAA's Northwest Fisheries Science Center aims to provide clarity among scientists, resource managers and planners on what ecological resilience means and how it can be achieved. The study, published this month in the journal PLOS ONE, is the first to examine the topic in the context of ecological restoration and identify ways that resilience can be measured and achieved at different scales.

"I was really interested in translating a broad concept like resilience into management or restoration actions," said lead author Britta Timpane-Padgham, a fisheries biologist at Northwest Fisheries Science Center who completed the study as part of her graduate degree in marine and environmental affairs at the UW.

"I wanted to do something that addressed impacts of climate change and connected the science with management and restoration efforts."

Timpane-Padgham scoured the scientific literature for all mentions of ecological resilience, then pared down the list of relevant articles to 170 examined for this study. She then identified in each paper the common attributes, or metrics, that contribute to resilience among species, populations or ecosystems. For example, genetic diversity and population density were commonly mentioned in the literature as attributes that help populations either recover from or resist disturbance.

Timpane-Padgham along with co-authors Terrie Klinger, professor and director of the UW's School of Marine and Environmental Affairs, and Tim Beechie, research biologist at Northwest Fisheries Science Center, grouped the various resilience attributes into five large categories, based on whether they affected individual plants or animals; whole populations; entire communities of plants and animals; ecosystems; or ecological processes. They then listed how many times each attribute was cited, which is one indicator of how well-suited a particular attribute is for measuring resilience.

"It's a very nice way of organizing what was sort of a confused body of literature," Beechie said. "It will at least allow people to get their heads around resilience and understand what it really is and what things you can actually measure."

The researchers say this work could be useful for people who manage ecosystem restoration projects and want to improve the chances of success under climate change. They could pick from the ordered list of attributes that relate specifically to their project and begin incorporating tactics that promote resilience from the start.

"Specifying resilience attributes that are appropriate for the system and that can be measured repeatably will help move resilience from concept to practice," Klinger said.

For example, with Puget Sound salmon recovery, managers are asking how climate change will alter various rivers' temperatures, flow levels and nutrient content. Because salmon recovery includes individual species, entire populations and the surrounding ecosystem, many resilience attributes are being used to monitor the status of the fish and recovery of the river ecosystems that support them.

The list of attributes that track resilience can be downloaded and sorted by managers to find the most relevant measures for the type of restoration project they are tackling. It is increasingly common to account for climate change in project plans, the researchers said, but more foresight and planning at the start of a project is crucial.

"The threat of climate change and its impacts is a considerable issue that should be looked at from the beginning of a restoration project. It needs to be its own planning objective," Timpane-Padgham said. "With this paper, I don't want to have something that will be published and collect dust. It's about providing something that will be useful for people."
-end-
No external funding was used for this study.

Posted with photos: http://www.washington.edu/news/2017/03/29/tackling-resilience-finding-order-in-chaos-to-help-buffer-against-climate-change/

For more information, contact Timpane-Padgham at britta.timpane-padgham@noaa.gov or 206-861-1258.

University of Washington

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.