Nav: Home

Wrong-way asteroid plays 'chicken' with Jupiter

March 29, 2017

For at least a million years, an asteroid orbiting the "wrong" way around the sun has been playing a cosmic game of chicken with giant Jupiter and with about 6,000 other asteroids sharing the giant planet's space, says a report published in the latest issue of Nature.

The asteroid, nicknamed Bee-Zed, is the only one in this solar system that's known both to have an opposite, retrograde orbit around the sun while at the same time sharing a planet's orbital space, says researcher and co-author Paul Wiegert of Western's Department of Physics and Astronomy.

All but 82 of the million or so known asteroids in our solar system travel around the sun in what's called a prograde motion: that is, counter-clockwise when visualized from above. But asteroid 2015 BZ509 ("Bee-Zed" for short) circles clockwise, in a retrograde motion -- moving against the flow of all other asteroids in the giant planet's orbital entourage.

Put another way, it's as if Jupiter is a monster truck on a track circling the sun, and the asteroids in Jupiter's orbit are sub-compact cars all whizzing along in the same direction. Bee-Zed is the rogue -- driving around the track in the wrong direction -- steering between the 6,000 other cars and swerving around the monster truck. And it does so every single lap, and has done so for thousands of laps for a million years or more.

So how does it avoid colliding with Jupiter? Jupiter's gravity actually deflects the asteroid's path at each pass so as to allow both to continue safely on their way, Wiegert says.

Little is known about the asteroid, which was discovered in January, 2015. It has a diameter of about three kilometers and it may have originated from the same place as Halley's comet, which also has a retrograde orbit. The team hasn't been able to determine yet if Bee-Zed is an icy comet or a rocky asteroid.

But their analysis -- based on complex calculations and on observations through the Large Binocular Camera on the Large Binocular Telescope in Mt. Graham, Arizona, during a span of 300 days -- show Bee-Zed is somehow able to maintain a stable orbit even as an outlier.

The calculations conducted by the team show the orbit has been stable for at least a million years and will be stable for at least a million more. Learning more about the asteroid provides another intriguing glimpse into previously unknown and unmapped features of our solar system. "The detective work has just begun," he said.
-end-
Co-researchers with Wiegert are Martin Connors of Athabaska University Observatories in Alberta, University of Calgary's Department of Physics and Astronomy and the Institute for Space-Earth Environmental Research at the University of Nagoya, Japan; and Christian Veillet of the Large Binocular Telescope Observatory in Tucson, Arizona. Their work was supported in part by the Natural Sciences and Engineering Council of Canada (NSERC). The research paper is available here: http://www.nature.com/nature/journal/v543/n7647/full/nature22029.html

Wiegert explains the asteroid's odd orbital path in this video: https://youtu.be/KZLkMYYeGsQ

A high-resolution animation of the asteroid's orbit can be found here: https://www.hightail.com/download/dDZHL0dLV3JqV0M5TE1UQw

MEDIA CONTACT: Debora Van Brenk, Media Relations Officer, Western University, 519-661-2111 x85165, or on mobile at 519-318-0657 and deb.vanbrenk@uwo.ca

ABOUT WESTERN: Western University delivers an academic experience second to none. Since 1878, The Western Experience has combined academic excellence with life-long opportunities for intellectual, social and cultural growth in order to better serve our communities. Our research excellence expands knowledge and drives discovery with real-world application. Western attracts individuals with a broad worldview, seeking to study, influence and lead in the international community.

University of Western Ontario

Related Solar System Articles:

From rocks in Colorado, evidence of a 'chaotic solar system'
Plumbing a 90 million-year-old layer cake of sedimentary rock in Colorado, a team of scientists from the University of Wisconsin-Madison and Northwestern University has found evidence confirming a critical theory of how the planets in our solar system behave in their orbits around the sun.
Why are there different 'flavors' of iron around the Solar System?
New work from Carnegie's Stephen Elardo and Anat Shahar shows that interactions between iron and nickel under the extreme pressures and temperatures similar to a planetary interior can help scientists understand the period in our Solar System's youth when planets were forming and their cores were created.
Does our solar system have an undiscovered planet? You can help astronomers find out
ASU's Adam Schneider and colleagues are hunting for runaway worlds in the space between stars, and citizen scientists can join the search with a new NASA-funded website.
Rare meteorites challenge our understanding of the solar system
Researchers have discovered minerals from 43 meteorites that landed on Earth 470 million years ago.
New evidence on the formation of the solar system
International research involving a Monash University scientist is using new computer models and evidence from meteorites to show that a low-mass supernova triggered the formation of our solar system.
More Solar System News and Solar System Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...