Nav: Home

Quantum communication: How to outwit noise

March 29, 2017

Nowadays we communicate via radio signals and send electrical pulses through long cables. This could change soon, however: Scientists have been working intensely on developing methods for quantum information transfer. This would enable tap-proof data transfer or, one day, even the linking of quantum computers.

Quantum information transfer requires reliable information transfer from one quantum system to the other, which is extremely difficult to achieve. Independently, two research teams -- one at the University of Innsbruck and the other at TU Wien (Vienna) -- have now developed a new quantum communication protocol. This protocol enables reliable quantum communication even under the presence of contaminating noise. Both research groups work with the same basic concept: To make the protocol immune to the noise, they add an additional element, a so-called quantum oscillator, at both ends of the quantum channel.

Reliable data transfer

Scientists have conducted quantum communication experiments for a long time. "Researchers presented a quantum teleportation protocol already in the 1990s. It permits transferring the state of one quantum system to another by using optical photons," says Benoit Vermersch, Postdoc in Peter Zoller's group at the University of Innsbruck. This works also over great distances but one has to accept that a lot of the photons are lost and only a tiny fraction reaches the detector.

"Our goal was to find a way to reliably transfer a quantum state from one place to the other without having to do it several times to make it work," explains Peter Rabl from the Atominstitut, TU Wien.Superconducting qubits, in particular, are promising elements for future quantum technologies. They are tiny circuits that can assume two different states at the same time. Contrary to conventional light switches that can be either turned on or turned off, the laws of quantum physics allow a qubit to assume any combination of these states, which is called quantum superposition.

To transfer this quantum state from one superconducting qubit to another requires microwave photons, which are already used for classic signal transfer. Reliably transferring quantum information via a microwave regime has been considered impossible as the constant thermal noise completely superposes the weaker quantum signal.

New transfer protocol

The two research groups have now shown that these obstacles are not impossible to overcome as previously assumed. In collaboration with teams from Harvard and Yale (USA) they have been able to develop a transfer protocol that is immune to the inevitable noise. "Our approach is to add another quantum system -- a microwave oscillator -- as a mediator at both ends of the protocol to couple the qubits instead of coupling them directly to the microwave channel or waveguide," explains Rabl.

"We cannot prevent the thermal noise that develops in the quantum channel," says Benoit Vermersch. "What is important is that this noise affects both oscillators on both ends in the same way. Therefore, we are able to exactly separate the detrimental effect of the noise from the weaker quantum signal through precise coupling to the waveguide."

"According to our calculations, we may connect qubits over several hundred meters with this protocol," says Peter Rabl. "We would still have to cool the channels but in the long term it will be technologically feasible to link buildings or even cities in a quantum physical manner via microwave channels."

Further information:

Prof. Peter Rabl
Institute for Atomic and Subatomic Physics
TU Wien
Stadionallee 2, 1020 Vienna
T: +43-1-58801-141830

Dr. Benoit Vermersch
Institute for Theoretical Physics
University of Innsbruck
Technikerstraße 25, 6020 Innsbruck
T: +43 512 507 52259

Vienna University of Technology

Related Quantum State Articles:

Quantum nanoscope
Researchers have studied how light can be used to 'see' the quantum nature of an electronic material.
Testing quantum field theory in a quantum simulator
Quantum field theories are often hard to verify in experiments.
Looking for the quantum frontier
Researchers have developed a new theoretical framework to identify computations that occupy the 'quantum frontier' -- the boundary at which problems become impossible for today's computers and can only be solved by a quantum computer.
Research reveals novel quantum state in strange insulating materials
Experiments show how electrons in Mott insulators with strong spin-orbit coupling arrange themselves to make the materials magnetic at low temperatures.
Quantum simulation technique yields topological soliton state in SSH model
Using atomic quantum-simulation, an experimental technique involving finely tuned lasers and ultracold atoms about a billion times colder than room temperature to replicate the properties of a topological insulator, a team of researchers at the University of Illinois at Urbana-Champaign has directly observed for the first time the protected boundary state of the topological insulator trans-polyacetylene.
New quantum states for better quantum memories
How can quantum information be stored as long as possible?
Thanksgiving dinner's carbon footprint: A state-by-state comparison
The environmental impact of your Thanksgiving dinner depends on where the meal is prepared.
Neutrons verify new quantum state
An international research team has proved the existence of spin-spirals in a quantum liquid.
USC quantum computing researchers reduce quantum information processing errors
USC Viterbi School of Engineering scientists found a new method to reduce the heating errors that have hindered quantum computing.
Novel state of matter: Observation of a quantum spin liquid
A novel and rare state of matter known as a quantum spin liquid has been empirically demonstrated in a monocrystal of the compound calcium-chromium oxide by team at HZB.

Related Quantum State Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#520 A Closer Look at Objectivism
This week we broach the topic of Objectivism. We'll be speaking with Keith Lockitch, senior fellow at the Ayn Rand Institute, about the philosophy of Objectivism as it's taught through Ayn Rand's writings. Then we'll speak with Denise Cummins, cognitive scientist, author and fellow at the Association for Psychological Science, about the impact of Objectivist ideology on society. Related links: This is what happens when you take Ayn Rand seriously Another Critic Who Doesn’t Care What Rand Thought or Why She Thought It, Only That She’s Wrong Quote is from "A Companion to Ayn Rand"