NUS scientists develop novel chip for fast and accurate disease detection at low cost

March 29, 2018

A novel invention by a team of researchers from the National University of Singapore (NUS) holds promise for a faster and cheaper way to diagnose diseases with high accuracy. Professor Zhang Yong from the Department of Biomedical Engineering at the NUS Faculty of Engineering and his team have developed a tiny microfluidic chip that could effectively detect minute amounts of biomolecules without the need for complex lab equipment.

Diseases diagnostics involves detection and quantification of nano-sized bio-particles such as DNA, proteins, viruses, and exosomes (extracellular vesicles). Typically, detection of biomolecules such as proteins are performed using colorimetric assays or fluorescent labelling with a secondary antibody for detection, and requires complex optical detection equipment such as fluorescent microscopy or spectrophotometry.

One alternative to reduce cost and complexity of disease detection is the adoption of label-free techniques, which are gaining traction in recent times. However, this approach requires precision engineering of nano-features (in a detection chip), complex optical setups, novel nano-probes (such as graphene oxide, carbon nanotubes, and gold nanorods) or additional amplification steps such as aggregation of nanoparticles to achieve sensitive detection of biomarkers.

"Our invention is an example of disruptive diagnostics. This tiny biochip can sensitively detect proteins and nano-sized polymer vesicles with a concentration as low as 10ng/mL (150 pM) and 3.75μg/mL respectively. It also has a very small footprint, weighing only 500 mg and is 6mm³ in size. Detection can be performed using standard laboratory microscopes, making this approach highly attractive for use in point-of-care diagnostics," explained Prof Zhang.

His team, comprising Dr Kerwin Kwek Zeming and two NUS PhD students Mr Thoriq Salafi and Ms Swati Shikha, published their findings in scientific journal Nature Communications on 28 March 2018.

Novel approach for disease diagnosis

This novel fluorescent label-free approach uses the lateral shifts in the position of the microbead substrate in pillar arrays, for quantifying the biomolecules, based on the change in surface forces and size, without the need of any external equipment. Due to the usage of lateral displacement, the nano-biomolecules can be detected in real-time and the detection is significantly faster in comparison to fluorescent label based detection.

"These techniques can also be extended to many other types of nano-biomolecules, including nucleic acid and virus detection. To complement this chip technology, we are also developing a portable smartphone-based accessory and microfluidic pump to make the whole detection platform portable for outside laboratory disease diagnostics. We hope to further develop this technology for commercialisation," said Prof Zhang.
This study was supported by a research grant from the Singapore Ministry of Education.

National University of Singapore

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to