Fat-sensing hormone helps control tadpole metamorphosis

March 29, 2018

ANN ARBOR -- When tadpoles are but tadpoles, they're voracious eaters, chomping down all of the plant matter in their paths.

Now, a University of Michigan study has shown that this voraciousness is because the hormonal and neural brakes to their eating are absent at this stage of development.

"One of the findings from our work is that during the tadpole stage, before they initiate metamorphosis, they don't have any of these homeostatic negative controls of food intake: they have their feeding controls stuck in the 'on' position," said lead author Robert Denver. "This allows the tadpoles to reach, as quickly as possible, a minimum body size for metamorphosis. If you watch some species of tadpole while they're eating, they look like tiny piranhas."

But just as they prepare to vault into frogdom, leptin, a hormone produced by fat that signals energy stores to the brain and suppresses the feeling of hunger, spikes in the tadpoles. This spike in leptin may signal to the brain that the tadpoles have enough energy stores to go through the exhausting process of metamorphosis.

The spike in leptin just before the beginning of metamorphosis helps regions in the brain that control hormone production and food intake mature. As the animal progresses through metamorphosis, its brain develops the ability to respond to leptin by shutting off feeding. This action of leptin is important for the tadpoles because they need to pause their eating at the climax of metamorphosis so that their bodies can overhaul their guts.

The guts are remodeled from a meters-long system that digests a vegetarian diet to a much shorter gut that digests only animal matter. This timing is a tricky balance to get right, says Denver, professor and chair of the U-M Department of Molecular, Cellular and Developmental Biology.

"Most research supports that tadpoles will capitalize on growth conditions because the bigger you are, the less likely you'll get picked off by predators, and you'll be a more effective predator once you become a frog," he said. "On the other hand, if the larval habitat is not favorable--if there are a lot of predators, or if it's going to dry out--tadpoles will initiate metamorphosis early."

To test whether it was leptin that shut off feeding in the tadpoles' brains, Denver and his team injected one group of tadpoles with a saline control. They gave another group of tadpoles a leptin injection. The tadpoles injected with saline continued to eat, but the tadpoles with the leptin injection stopped completely. This occurred in tadpoles that were going through metamorphosis, but not in younger tadpoles.

The researchers also demonstrated that leptin controls the suppression of feeding at metamorphic climax when the gut remodels to support a carnivorous diet. They did this by blocking the leptin signal in the tadpoles' brains, which caused the tadpoles to resume feeding.

Denver says there are interesting parallels between this process in amphibians and the same process in mammals. Neonatal rats similarly feed (suckle) voraciously until leptin kicks in, at which point they develop negative homeostatic controls so that they don't overeat. This allows the hypothalamus, a brain region that controls feeding, to mature and prepare the rat to eat solid food.

"What's happening in the amphibian tadpole is a very ancient process--it's a developmental, hormonal process that controls the timing of the development of the neural feeding circuitry, which also influences life history transitions," Denver said. "In a tadpole, compared to mammals, the morphological change is much more dramatic."

The team's research is published in the Proceedings of the Royal Society B.
-end-


University of Michigan

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.