Researchers increase understanding of coarse-to-fine human visual perception

March 29, 2018

A long-standing paradox in vision shows that the complexity of neural encoding increases along the visual hierarchy even as visual resolution dramatically decreases. Put differently, how do people simultaneously recognize the face of a child, while at the same time visually resolving individual eyelash hairs?

The idea that sensory transformation discards low-level detail to yield invariant classification is a central core of many models of brain function. Some complex models then invoke large re-entrant loops to solve this fundamental paradox of increasing complexity vis-à-vis decreasing selectivity.

Primates can identify objects in the 10° central visual field within 150 ms, suggesting an initial fast cascade of largely feedforward processing. How they can effortlessly perceive both global and local features of objects in such a short time and in great detail remains a mystery. The main question in vision study is how the cortex integrates local visual cues to form global representations along the object-processing visual hierarchy.

In a recent study published in Neuron, Dr. WANG Wei's lab at the Institute of Neuroscience of the Chinese Academy of Sciences revealed an unexpected neural clustering preserving visual acuity from V1 into V4, enabling the spatiotemporal separation of processing local and global features along the hierarchy.

The work from Dr. WANG's group aims at evaluating the core concept of whether low-level information like spatial resolution is preserved along the visual hierarchy, and if so, what are its functional implications. This is fundamental to understanding how the brain does sensory transformation.

Dr. WANG's lab studied the simultaneous transformation of spatial resolution (i.e., visual acuity) across macaque parafoveal V1, V2, and V4. Spatial resolution is often measured as spatial frequency (SF) discrimination. The researchers particularly focused on spatial analysis in V4, which links the analysis of local features by V1 and V2 with the global object representation provided by IT.

Surprisingly, they discovered clustered "islands" of V4 neurons selective for high SFs up to 12 cycles/°, far exceeding the average optimal SFs of V1 and V2 neurons at similar retinal eccentricities. These neural clusters violate the inverse relationship between visual acuity and retinal eccentricity.

They proceeded to show that higher-acuity clusters represent local features, whereas lower-acuity clusters represent global features of the same stimuli. Furthermore, the clustered neurons with high-SF selectivity were found to respond 10 ms later than those in low-SF domains, providing direct neural evidence for the coarse-to-fine nature of human perception at intermediate levels of the visual processing hierarchy.

The study demonstrated that neurons in V4 (and most likely also in IT) do not necessarily need to have only low visual resolution. The research will prompt further studies to probe how this preservation of low-level information is useful for higher-level vision.

The study for the first time showed an unexpected compartmentation of area V4 into SF-selective functional domains that extend to high visual acuity. Higher acuities are preserved to later stages of the visual hierarchy where more complex visual cognitive behavior occurs, and may begin to resolve the long-standing paradox concerning fine visual discrimination in visual perception.

Data provided by Dr. WANG's lab has informed a conceptual reevaluation of processing models that currently dominate system neuroscience and artificial neural networks such as Deep Neural Networks (DNN).
-end-


Chinese Academy of Sciences Headquarters

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.