Lesson learned? Massive study finds lectures still dominate STEM ed

March 29, 2018

An analysis of more than 2,000 college classes in science, technology, engineering and math has imparted a lesson that might resonate with many students who sat through them: Enough with the lectures, already.

Published March 29 in the journal Science, the largest-ever observational study of undergraduate STEM education monitored nearly 550 faculty as they taught more than 700 courses at 25 institutions across the United States and Canada.

The University of Nebraska-Lincoln's Marilyne Stains and her colleagues found that 55 percent of STEM classroom interactions consisted mostly of conventional lecturing, a style that prior research has identified as among the least effective at teaching and engaging students.

Another 27 percent featured interactive lectures that had students participating in some group activities or answering multiple-choice questions with handheld clickers. Just 18 percent emphasized a student-centered style heavy on group work and discussions.

The predominance of lecturing observed in the study persists despite many years of federal and state educational agencies advocating for more student-centered learning, the researchers said.

"There is an enormous amount of work that has demonstrated that these (student-centered) strategies improve students' learning and attitudes toward science," said Stains, the study's lead author and associate professor of chemistry at Nebraska. "It's not just that they understand it better, but they also appreciate science more. They're not as scared of it, and they engage more easily with it.

"When you see that kind of effect, it makes you say, 'Why are we still doing it the other way?'"

One potential culprit captured by the study: Faculty may lack the training necessary to take advantage of smaller class sizes, open classroom layouts and other strategies meant to reduce the reliance on conventional lecturing. Lectures did occur less often in smaller than larger classes, the study found, and open layouts did correlate with more student-centered learning. But about half of the courses with those advantages still featured more conventional lecturing than interactive or student-centered teaching styles.

"When you talk to faculty, you often hear, 'I teach in an amphitheater. I could never do group work; it's just not practical. But if I had a small class, I could do it,'" Stains said. "But just because you have the right layout doesn't mean you're actually going to (promote) active learning. You need to be trained in those kinds of practices. If there's not a budget for professional development to help faculty use those environments, they're going to default to what they know best, which is lecturing."

The study did show that many faculty adopt multiple teaching styles throughout a semester. Among the faculty who were observed at least twice, 42 percent demonstrated two styles. Based on its data, the research team concluded that three or four classroom visits are needed to reliably characterize an instructor's approach.

"If your institution is really focused on student-centered teaching and visits your classroom only once a semester, on a day that you're lecturing, then you're going to fare poorly," Stains said.

PERCEPTION VS. REALITY

Much of the previous research into STEM instruction has relied on surveying faculty about their practices. Though the resulting data has proven valuable, Stains said, the flaws of human memory and perception inevitably find their way into that data.

"Surveys and self-reports are useful to get people's perceptions of what they are doing," she said. "If you ask me about how I teach, I might tell you, 'I spend 50 percent of my class having students talk to each other.' But when you actually come to my class and observe, you may find that it's more like 30 percent. Our perception is not always accurate."

So the research team decided to monitor STEM classroom practices with a commonly used protocol that involved documenting many types of student and instructor behavior during every two-minute interval throughout a class. An analysis that accounted for the prevalence of those behaviors allowed the team to identify seven instructional profiles, which were then categorized into three broad teaching styles.

Those efforts also led to the development of an app that runs essentially the same analyses conducted in the study.

"People can do their own measurements and see how they compare to this large dataset - see how either their department or college is doing - and say, 'This is where we stand. This is where we want to go.'"

In the meantime, the study's scale and interdisciplinary nature make it a "reliable snapshot" of how STEM gets taught to undergraduate students in North America, its authors said.

"There are many universities that are interested in integrating student-centered practices into their undergraduate STEM curriculum," Stains said. "This could give them insights about what's probably going on in their classrooms if they're at a research-intensive institution."
-end-
Stains authored the study with colleagues from Auburn University; Simon Fraser University; the University of British Columbia; the University of Colorado Boulder; the University of Iowa; Armstrong State University; the University of California, Los Angeles; Otterbein University; the University of California, San Diego; the University of Michigan; the University of Calgary; the University of Virginia; the University of Maine; and Saint Mary's University (Halifax).

The research team received funding in part from the National Science Foundation and the National Institutes of Health.

University of Nebraska-Lincoln

Related Learning Articles from Brightsurf:

Learning the language of sugars
We're told not to eat too much sugar, but in reality, all of our cells are covered in sugar molecules called glycans.

When learning on your own is not enough
We make decisions based on not only our own learning experience, but also learning from others.

Learning more about particle collisions with machine learning
A team of Argonne scientists has devised a machine learning algorithm that calculates, with low computational time, how the ATLAS detector in the Large Hadron Collider would respond to the ten times more data expected with a planned upgrade in 2027.

Getting kids moving, and learning
Children are set to move more, improve their skills, and come up with their own creative tennis games with the launch of HomeCourtTennis, a new initiative to assist teachers and coaches with keeping kids active while at home.

How expectations influence learning
During learning, the brain is a prediction engine that continually makes theories about our environment and accurately registers whether an assumption is true or not.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Learning is optimized when we fail 15% of the time
If you're always scoring 100%, you're probably not learning anything new.

School spending cuts triggered by great recession linked to sizable learning losses for learning losses for students in hardest hit areas
Substantial school spending cuts triggered by the Great Recession were associated with sizable losses in academic achievement for students living in counties most affected by the economic downturn, according to a new study published today in AERA Open, a peer-reviewed journal of the American Educational Research Association.

Lessons in learning
A new Harvard study shows that, though students felt like they learned more from traditional lectures, they actually learned more when taking part in active learning classrooms.

Learning to look
A team led by JGI scientists has overhauled the perception of inovirus diversity.

Read More: Learning News and Learning Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.