Evading detection by an infrared camera, octopus style

March 29, 2018

Inspired by organisms that can change the nature of their skin, such as octopuses, researchers have developed a device with tunable infrared reflectivity. The advancement could help hide objects from infrared (heat-sensing) cameras, among other applications. Infrared light is a part of the electromagnetic spectrum that's not visible to the human eye but is felt in the form of heat. Controlling light at this wavelength is desirable for a wide range of applications, for example in regulating the temperature of buildings or for developing camouflage platforms that might be useful in military operations. To date however, it has been difficult to develop a camouflage device that can adapt to a changing environment, while maintaining other desirable qualities, such as repeated use and a low working temperature range. Here, Chengyi Xu and colleagues took inspiration from cephalopods (such as squid, octopuses, and cuttlefish), which feature skin containing clusters of adaptive chromatophore pigment cells, as well light-reflecting cells, that can expand and contract. The degree of expansion and contraction dictates how much light of variable wavelengths is reflected. Using a combination of special electrodes, wrinkled membranes and an infrared-reflective coating, the researchers created a synthetic device that mimics cephalopod skin. As the membrane expands through the application of an electric current, the more light of a given wavelength is reflected. Xu et al. created a squid-shaped version of the device and analyzed its ability to "hide" from an infrared camera; they report that altering the reflectance of the device so that its temperature changed by a mere 2°Celsius was sufficient to mask its existence from an infrared camera.
-end-


American Association for the Advancement of Science

Related Organisms Articles from Brightsurf:

To push or to pull? How many-limbed marine organisms swim
Couinter-intuitively, small marine animals don't use their limbs or propulsors to push themselves through the water while swimming.

Identical evolution of isolated organisms
Palaeontologists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and the University of Calgary in Canada have provided new proof of parallel evolution: conodonts, early vertebrates from the Permian period, adapted to new habitats in almost identical ways despite living in different geographical regions.

The EU not ready for the release of Gene drive organisms into the environment
Gene drive organisms (GDOs) have been suggested as an approach to solve some of the most pressing environmental and public health issues.

Tiny marine organisms as the key to global cycles
Marine microorganisms play a very important role in global cycles such as of the uptake of carbon dioxide from the atmosphere.

Why organisms shrink
Everyone is talking about global warming. A team of paleontologists at GeoZentrum Nordbayern at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) has recently investigated how prehistoric organisms reacted to climate change, basing their research on belemnites.

The effects of microplastics on organisms in coastal areas
Microplastics (plastic particles under 5 mm) are an abundant type of debris found in salt and freshwater environments.

Climate change is reshaping communities of ocean organisms
Climate change is reshaping communities of fish and other sea life, according to a pioneering study on how ocean warming is affecting the mix of species.

Fungicides as an underestimated hazard for freshwater organisms
Large amounts of fungicides, used in agriculture, leak into nearby surface waters.

FEFU scientist reported on concentration of pesticides in marine organisms
According to ecotoxicologist from Far Eastern Federal University (FEFU), from the 90s and during 2000s in the tissues of Russian Far Eastern mussels the concentration of organochlorine pesticides (OCPs) that had been globally used in agriculture in the mid-twentieth century has increased about ten times.

How genes interact to build tissues and organisms
A group of scientists at the National Centre for Genomic Analysis (CNAG-CRG) from the Centre for Genomic Regulation (CRG), in Barcelona, Spain, led by Holger Heyn, developed a new computational tool, based on the mathematical Graph theory, to infer global, large-scale regulatory networks, from healthy and pathological organs, such as those affected by diabetes or Alzheimer's disease.

Read More: Organisms News and Organisms Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.